PAGE: 1 PRINT DATE: 11/16/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL HARDWARE

NUMBER: 03-1-0245 -X

SUBSYSTEM NAME: MAIN PROPULSION

REVISION: 3 11/07/00

PART DATA

PART NAME PART NUMBER
VENDOR NAME VENDOR NUMBER

LRU : VALVE SOLENOID, NC 3W, TYPE 2 MC284-0404-0032,-0042

UNITED SPACE ALLIANCE - NSLD 13111-3

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS:

VALVE, SOLENOID, NORMALLY CLOSED, 3-WAY, 1/4 INCH. LH2 RTLS DUMP VALVE CONTROL. OPENING (LV72,73).

VALVE WAS ORIGINALLY DESIGNED AND MANUFACTURED BY WRIGHT COMPONENTS (NOW PERKIN ELMER) BUT IS NOW MANUFACTURED BY UNITED SPACE ALLIANCE-NSLD AS AN ALTERNATE PRODUCTION AGENCY.

REFERENCE DESIGNATORS:

QUANTITY OF LIKE ITEMS: 2

FUNCTION:

THE SOLENOID VALVES CONTROL PNEUMATIC PRESSURE TO OPEN THE LH2 RTLS DUMP VALVES (PV17, PV18). THE SOLENOID VALVES (LV77, LV78) MUST ENERGIZE IN ORDER TO PROVIDE ACTUATION PRESSURE TO OPEN THE SERIES REDUNDANT RTLS DUMP VALVES. THE OPEN SOLENOIDS MUST DEACTUATE TO VENT SO THE DUMP VALVES CAN CLOSE.

TWO SERIES REDUNDANT RTLS DUMP VALVES PROVIDE A PATH TO DUMP LH2 OVERBOARD FROM THE LH2 FEEDLINE MANIFOLD. FOR NOMINAL, ATO AND AOA MISSIONS THE VALVES ARE SOFTWARE COMMANDED OPEN AT MECO+11 SECONDS AND CLOSED AT DUMP STOP. THE VALVES ARE THEN RE-OPENED FOR ENTRY TO PERFORM A FINAL VACUUM INERT PRIOR TO ENTRY. FOR RTLS AND TAL MISSIONS, THE VALVES ARE OPENED NOMINALLY AND THEN REMAIN OPEN UNTIL ENTRY AT VREL=5300 FT/SEC. THE RTLS INBOARD VALVE, PV17, PROVIDES A RELIEF FEATURE FOR LH2 TRAPPED BETWEEN THE INBOARD AND OUTBOARD, PV18, VALVES.

PAGE 2 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS FMEA -- CIL FAILURE MODE

NUMBER: 03-1-0245-03

REVISION#: 3 11/07/00

SUBSYSTEM NAME: MAIN PROPULSION

LRU: LH2 RTLS DUMP VALVE OP SOLENOIDS, PV17, 18 **CRITICALITY OF THIS ITEM NAME**: LH2 RTLS DUMP VALVE OP SOLENOIDS, PV17, 18 **FAILURE MODE**: 1R2

FAILURE MODE:

PREMATURE ACTUATION (RTLS DUMP VALVE FAILS TO REMAIN CLOSED, REFERENCE FMEA/CIL 03-1-0651-02) CAUSING OPEN PRESSURE TO BE APPLIED TO THE VALVE ACTUATOR FOR LOADING AND ASCENT

MISSION PHASE: PL PRE-LAUNCH

LO LIFT-OFF

VEHICLE/PAYLOAD/KIT EFFECTIVITY: 102 COLUMBIA

103 DISCOVERY104 ATLANTIS105 ENDEAVOUR

CAUSE:

PIECE PART STRUCTURAL FAILURE, SEAL/SEAT DAMAGE

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

REDUNDANCY SCREEN A) PASS

B) PASS C) PASS

PASS/FAIL RATIONALE:

A)

B)

PASSES B SCREEN SINCE (PV17, 18) POSITION SWITCHES WILL INDICATE THIS FAILURE.

C)

- FAILURE EFFECTS -

(A) SUBSYSTEM:

RESULTS IN LOSS OF REDUNDANCY ONLY. FAILURE RESULTS IN THE OPENING OF ONE RTLS DUMP VALVE (PV17 OR PV18). SERIES REDUNDANT VALVE WILL PREVENT LOSS OF LH2 OVERBOARD.

PAGE: 3 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL FAILURE MODE NUMBER: 03-1-0245-03

(B) INTERFACING SUBSYSTEM(S):

SAME AS A.

(C) MISSION:

NO EFFECT.

(D) CREW, VEHICLE, AND ELEMENT(S):

SAME AS C.

(E) FUNCTIONAL CRITICALITY EFFECTS:

CASE 1:

1R/2 2 SUCCESS PATHS. TIME FRAME - LOADING AND ASCENT.

- PREMATURE ACTUATION OF EITHER RTLS DUMP OPENING SOLENOID VALVE (LV72 OR LV73).
- REMAINING RTLS DUMP VALVE (PV17 OR PV18) FAILS TO REMAIN CLOSED.

FAILURE RESULTS IN LH2 LEAKAGE OVERBOARD, CAUSING FIRE/EXPLOSION HAZARD. POSSIBLE LOSS OF CREW/VEHICLE.

A MAXIMUM OF 1800 LBS OF LH2 COULD BE LOST BETWEEN LIFTOFF AND MECO. THIS WOULD NOT AFFECT ENGINE INLET CONDITIONS, BUT WOULD CAUSE A LOW LEVEL CUTOFF (MAY CAUSE ATO OR AOA).

CASE 2:

1R/2 2 SUCCESS PATHS. TIME FRAME - LOADING AND ASCENT.

- 1) PREMATURE ACTUATION OF INBOARD RTLS DUMP OPENING SOLENOID VALVE (LV72).
- 2) RUPTURE/LEAKAGE OF LINE BETWEEN INBOARD AND OUTBOARD RTLS DUMP VALVES.

FAILURE RESULTS IN LH2 LEAKAGE INTO THE AFT COMPARTMENT, CAUSING FIRE/EXPLOSION HAZARD. POSSIBLE LOSS OF CREW/VEHICLE.

-DISPOSITION RATIONALE-

(A) DESIGN:

VALVE IS DESIGNED FOR A PRESSURE FACTOR OF SAFETY OF 2.0 PROOF, 4.0 BURST. THE CLOSURE DEVICE IS A 430 CRES BALL ACTING UPON EITHER OF TWO VESPEL SEATS. THE VALVE FEATURES A BALANCED LOAD ON THE BALL BY APPLYING INLET PRESSURE (750 PSIG NOMINAL) DIRECTLY TO THE BALL AT THE INLET SEAT AND INDIRECTLY (VIA A BELLOWS) THROUGH THE VENT SEAT. THE BELLOWS IS ASSISTED BY A SPRING, THE FORCE OF WHICH INSURES THE BALL IS HELD SECURELY AGAINST THE INLET SEAT WHEN THE SOLENOID IS DEENERGIZED. UPON BEING ENERGIZED THE SOLENOID DEVELOPS THE

PAGE: 4 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL FAILURE MODE NUMBER: 03-1-0245-03

FORCE TO OVERCOME THE SPRING LOAD AND SEATS THE BALL ONTO THE VENT SEAT TO ALLOW HELIUM FLOW. TOTAL POPPET MOVEMENT (STROKE) IS LESS THAN 0.040 INCH.

PREMATURE ACTUATION, FROM THE MECHANICAL VIEW, MEANS APPLICATION OF A DIFFERENTIAL FORCE TO THE VALVE BALL TO CAUSE IT TO MOVE FROM THE INLET SEAT TO THE VENT SEAT. ON THE SOLENOID SIDE OF THE BALL, NO MECHANICAL FAILURES WOULD CAUSE PREMATURE ACTUATION. ON THE OTHER HAND, IF THE CLOSING FORCE OF THE BELLOWS/SPRING WERE REMOVED, INLET PRESSURE AND FLOW ACTING ON THE BALL WOULD DRIVE IT TO THE VENT SEAT, CAUSING PREMATURE ACTUATION.

THE FORCE TO HOLD THE BALL TO THE INLET SEAT, WHEN THE SOLENOID IS DEENERGIZED, IS PROVIDED BY THE BELLOWS ASSEMBLY AND SPRING THROUGH THE VALVE POPPET. IF THE BELLOWS FAILS, OR LEAKS TO THE POINT OF REDUCING THE BELLOWS INTERNAL PRESSURE TO LESS THAN THE VALVE INLET PRESSURE, THE LOAD BALANCING FEATURE IS ELIMINATED AND THE BALL WOULD MOVE TO THE VENT SEAT. THE BELLOWS IS MADE OF NICKEL-COBALT-COPPER AND IS PROOF PRESSURE TESTED AT 1550 PSIG PRIOR TO ASSEMBLY INTO THE VALVE.

IF THE SPRING BREAKS, THE PRESSURIZED BELLOWS WOULD EXERT SUFFICIENT FORCE TO RETURN THE BALL TO THE INLET SEAT; HOWEVER, SEAT LEAKAGE MAY RESULT. THE SPRING IS MADE FROM 17-7PH CRES (ELGILOY) WIRE AND IS HEAT TREATED FOLLOWING FORMING. IT HAS A SPRING RATE OF 13.5 POUNDS/INCH AND EXERTS A FORCE OF 7.54 POUNDS IN ITS INSTALLED CONDITION.

PREMATURE ACTUATION DUE TO SEAT/SEAL DAMAGE IS VERY UNLIKELY. THIS PRESUMES FLOW PAST THE SEATED BALL AT A RATE SUFFICIENT TO PRESSURIZE THE ACTUATION PORT TO A PRESSURE OF 400 PSIA MINIMUM, WHILE THE VENT PORT IS OPEN. THE BALL IS OF 430 CRES AND THE SEAT IS OF VESPEL.

THE -0022 CONFIGURATION WAS ADDED DUE TO A BELLOWS ASSEMBLY DESIGN CHANGE (P/N 24340 TO P/N 24340-1) TO ELIMINATE THE "SQUIRMED" CONDITION WHICH SOME OF THE ORIGINAL BELLOWS ASSEMBLIES EXPERIENCED DURING PROOF PRESSURE TESTING AT ATP. THE DESIGN CHANGE WAS MADE TO STRENGTHEN THE BELLOWS. BECAUSE THE DAMAGE OCCURRED DURING ATP, VALVES ALREADY IN THE FLEET (-0012 CONFIGURATION) WERE X-RAY TESTED AND ONLY VALVES WHICH HAD SQUIRMED BELLOWS WERE UPGRADED TO THE -0022 CONFIGURATION.

THE -0032 AND -0042 CONFIGURATION SOLENOID VALVES ARE IDENTICAL TO THE -0012 AND -0022 CONFIGURATION SOLENOID VALVES (RESPECTIVELY) WITH THE EXCEPTIONS OF ADDING THE FILTER (10 MICRON NOMINAL, 25 MICRON ABSOLUTE) IN THE VENT PORT OF THE SOLENOID VALVE AND REDESIGN OF THE VENT PORT CHECK VALVE. THIS FILTER WAS ADDED TO PREVENT CONTAMINATION AND METALLIC PARTICLES GENERATED DURING THE REMOVAL OF THE VENT PORT CHECK VALVE DURING OMRSD LEAKAGE MEASUREMENTS FROM ENTERING THE SOLENOID VALVE.

THE VENT PORT CHECK VALVE (P/N 11107-5) WAS REDESIGNED (P/N 11107-7) TO PREVENT THE POPPET FROM BEING EJECTED DUE TO SHEARING OF THE RETAINING NUT THREAD. A PIN WAS ADDED TO THE CHECK VALVE HOUSING, WHICH RETAINS THE POPPET WITHIN THE CHECK VALVE HOUSING. A NEW ALUMINUM NUT, WHICH PROVIDES A MINIMUM ENGAGEMENT OF THREE THREADS, WAS UTILIZED TO INCREASE RELIABILITY.

PAGE: 5 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL FAILURE MODE NUMBER: 03-1-0245-03

(B) TEST:

ATP

AMBIENT TEMPERATURE TESTS PROOF PRESSURE: 1560 PSIG EXTERNAL LEAKAGE: 850 PSIG

INTERNAL LEAKAGE: 740 PSIG, ENERGIZED AND DEENERGIZED

ELECTRICAL CHARACTERISTICS AND RESPONSE

REDUCED TEMPERATURE TESTS (-160 DEG F)

ELECTRICAL CHARACTERISTICS AND RESPONSE INTERNAL LEAKAGE

ELECTRICAL BONDING TESTS

SOLENOID SUBASSEMBLY TESTS ELECTRICAL CHARACTERISTICS ENCLOSURE LEAKAGE (ONE ATMOSPHERE)

CERTIFICATION

TWO UNITS -

PORT AND FITTING TORQUE

SALT FOG EXPOSURE FOLLOWED BY ELECTRICAL AND LEAKAGE CHECKS

VIBRATION - AMBIENT

RANDOM VIBRATION TEST: 13.1 HOURS BOTH AXES FOR TWO VIBRATION LEVELS TRANSIENT VIBRATION SWEEP: RUN WITH ONE SPECIMEN ENERGIZED AND ONE DEENERGIZED, FOLLOWED BY ELECTRICAL CHARACTERISTICS AND LEAKAGE CHECKS

SHOCK

HANDLING

FLOW

ENERGIZED DEENERGIZED

ELECTRICAL

FIFTY HOUR CONTINUOUS CURRENT TEST AT 130 DEG F

LIFE

AMBIENT TEMPERATURE ENDURANCE (4500 CYCLES FOLLOWED BY ELECTRICAL AND LEAKAGE CHECKS)

130 DEG F ENDURANCE (500 CYCLES FOLLOWED BY ELECTRICAL AND LEAKAGE CHECKS) OPERATION CYCLES (REPEATED 20 TIMES)

REPEAT OF AMBIENT TEMPERATURE ENDURANCE

-160 DEG F ENDURANCE (500 CYCLES FOLLOWED BY ELECTRICAL AND LEAKAGE CHECKS)

PAGE: 6 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL FAILURE MODE NUMBER: 03-1-0245-03

DISASSEMBLY AND INSPECTION

BURST PRESSURE: 3400 PSIG

GROUND TURNAROUND TEST

ANY TURNAROUND CHECKOUT IS ACCOMPLISHED IN ACCORDANCE WITH OMRSD.

(C) INSPECTION:

RECEIVING INSPECTION RAW MATERIALS ARE VERIFIED BY INSPECTION FOR MATERIAL AND PROCESSES CERTIFICATION. BODY HOUSING BAR STOCK IS ULTRASONICALLY INSPECTED.

CONTAMINATION CONTROL

CLEANLINESS LEVEL VERIFIED TO 100A. CORROSION PROTECTION IS VERIFIED BY INSPECTION.

ASSEMBLY/INSTALLATION

10X MAGNIFICATION EXAMINATION OF ALL DETAIL PARTS FOR BURRS, DAMAGE AND CORROSION IS MADE PRIOR TO ASSEMBLY. ALL DETAIL PARTS ARE INSPECTED FOR DIMENSIONS. CRITICAL SURFACE FINISHES ARE INSPECTED USING A COMPARATOR AT 10X MAGNIFICATION. OTHER SURFACE FINISHES ARE INSPECTED AND VERIFIED WITH A PROFILOMETER. TORQUES ARE VERIFIED TO BE IN ACCORDANCE WITH DRAWING REQUIREMENTS. MANDATORY INSPECTION POINTS ARE INCLUDED IN THE ASSEMBLY PROCEDURE.

CRITICAL PROCESS

WELDING, HEAT TREATMENT AND PARTS PASSIVATION VERIFIED BY INSPECTION. POTTING OF SOLDER CUPS, ELECTRICAL WIRE STRIPPING, AND SOLDERING OF CONNECTORS ARE VERIFIED BY INSPECTION. CHROME PLATING AND DRY FILM LUBRICATION ARE VERIFIED BY INSPECTION.

NONDESTRUCTIVE EVALUATION

WELDS VISUALLY EXAMINED & VERIFIED BY X-RAY AND DYE PENETRANT INSPECTIONS. THE SOLENOID ASSEMBLY IS SUBJECTED TO LEAKAGE VERIFICATION USING RADIOACTIVE TRACER TECHNIQUES. SOME VALVE BODIES WERE SUBJECTED TO 10X MAGNIFICATION INSPECTION ONLY. OTHER VALVE BODIES WERE SUBJECTED TO EDDY CURRENT INSPECTION, IN ADDITION TO 10X MAGNIFICATION. THE REMAINING VALVE BODIES WERE SUBJECTED TO 10X MAGNIFICATION, ETCH AND DYE PENETRANT INSPECTIONS. REFURBISHED VALVE BODIES WERE SUBJECTED TO 40X MAGNIFICATION INSPECTION. BELLOWS ASSEMBLY IS PROOF PRESSURE TESTED AND LEAK CHECKED.

TESTING

ATP VERIFIED BY INSPECTION.

HANDLING/PACKAGING

HANDLING, PACKAGING, STORAGE AND SHIPPING REQUIREMENTS ARE VERIFIED BY INSPECTION.

PAGE: 7 PRINT DATE: 12/12/01

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- CIL FAILURE MODE NUMBER: 03-1-0245-03

(D) FAILURE HISTORY:

LEAKAGE RESULTING FROM SEAL/SEAT DAMAGE (OR CONTAMINATION) HAS OCCURRED BUT HAS NOT BEEN OF SUFFICIENT MAGNITUDE TO CAUSE PREMATURE ACTUATION (REFERENCE FMEA/CIL 03-1-0291-01, SOLENOID EXTERNAL LEAKAGE THROUGH VENT PORT).

CURRENT DATA ON TEST FAILURE, FLIGHT FAILURE, UNEXPLAINED ANOMALIES, AND OTHER FAILURES EXPERIENCED DURING GROUND PROCESSING ACTIVITY CAN BE FOUND IN THE PRACA DATABASE.

(E) OPERATIONAL USE:

FLIGHT: WHEN THE ULLAGE PRESSURE DROPS BELOW 28 PSI, THE CREW WILL OPEN THE LH2 FLOW CONTROL VALVE WITH THE COCKPIT SWITCH. WHEN THIS IS INEFFECTIVE AND THE NPSP DROPS BELOW A PREFLIGHT ACCEPTED VALUE, THE CREW WILL ABORT TO TAL OR ACLS.

- APPROVALS -

S&R ENGINEERING : W.P. MUSTY :/S/ W. P. MUSTY

S&R ENGINEERING ITM : P. A. STENGER-NGUYEN :/S/ P. A. STENGER-NGUYEN

: DAVE NEARY DESIGN ENGINEERING :/S/ DAVE NEARY MPS SUBSYSTEM MGR. : TIM REITH :/S/ TIM REITH MOD : JEFF MUSLER :/S/ JEFF MUSLER : MIKE SNYDER USA SAM :/S/ MIKE SNYDER USA ORBITER ELEMENT : SUZANNE LITTLE :/S/ SUZANNE LITTLE NASA SR&QA : ERICH BASS :/S/ ERICH BASS