PAGE: 1

PRINT DATE: 05/27/94

FAILURE MODES EFFECTS ANALYSIS (FMEA) - CRITICAL HARDWARE

NUMBER: 05-6-2010C -X

SUBSYSTEM NAME: ELECTRICAL POWER DISTRIBUTION & CONTROL

REVISION: 7

05/26/94

PART NAME VENDOR NAME PART NUMBER VENDOR NUMBER

LRU

: AFT PCA 4, 5, 6

VO70-765280

SRU

; RUSE, HIGH CURRENT

ME451-0016-2150

## PART DATA

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS: PUSE F3, 150 AMP, HIGH CURRENT - LOCATED IN AFT PCA 6

REFERENCE DESIGNATORS: 56V76A136F3

QUANTITY OF LIKE ITEMS: 1

ONE

FUNCTION:

CONDUCTS ORBITER MAIN BUSIC CURRENT AND PROVIDES OVERCURRENT PROTECTION FROM AFT POWER CONTROLLER ASSEMBLY (APCA) 6 TO APCA 3.

PAGE: 2

PRINT DATE: 05/27/94

# FAILURE MODES EFFECTS ANALYSIS (FMEA) - CRITICAL FAILURE MODE NUMBER: 05-6-2010C - 01

REVISION#

05/26/94

SUBSYSTEM NAME: ELECTRICAL POWER DISTRIBUTION & CONTROL

LRU: AFT PCA 4, 5, 6

CRITICALITY OF THIS

ITEM NAME: FUSE, HIGH CURRENT

FAILURE MODE: 1R2

FAILURE MODE:

FAILS OPEN, FAILS TO CONDUCT

MISSION PHASE:

LIFT-OFF

VEHICLE/PAYLOAD/KIT EFFECTIVITY: 102 COLUMBIA

103 DISCOVERY

104 ATLANTIS

105 ENDEAVOUR

CAUSE:

STRUCTURAL FAILURE, CONTAMINATION, VIBRATION, MECHANICAL SHOCK, PROCESSING ANOMALY, THERMAL STRESS

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

REDUNDANCY SCREEN

A) PASS

B) PASS

C) PASS

#### PASS/FAIL RATIONALE:

"A" SCREEN PASSES BECAUSE FUSE FAIL OPEN IS DETECTABLE DURING GROUND. TURNAROUND TEST

B)

\*B\* SCREEN PASSES BECAUSE FUSE FAIL OPEN IS DETECTABLE DURING FLIGHT FROM AVAILABLE MEASUREMENT INDICATION

"C" SCREEN PASSES BECAUSE REDUNDANT FUSES ARE PHYSICALLY ISOLATED FROM EACH OTHER

#### - FAILURE EFFECTS -

# (A) SUBSYSTEM:

INABILITY TO CONDUCT ORBITER MAIN BUSIC POWER FROM APCA 5 TO APCA 3

### (B) INTERFACING SUBSYSTEM(S):

LOSS OF POWER REDUNDANCY TO FOUR SRB-RGA'S (1, 2, 3 AND 4).

# (C) MISSION:

**NO EFFECT - FIRST FAILURE** 

PAGE: 3

PRINT DATE: 05/27/94

FAILURE MODES EFFECTS ANALYSIS (FMEA) - CRITICAL FAILURE MODE NUMBER: 05-6-2010C - 01

(D) CREW, VEHICLE, AND ELEMENT(S): NO EFFECT - FIRST FAILURE

(E) FUNCTIONAL CRITICALITY EFFECTS: POSSIBLE LOSS OF CREW/VEHICLE AFTER TWO FAILURES:

FIRST FAILURE (FUSE OPENS) WOULD CAUSE LOSS OF BACK UP POWER FROM ORBITER MAIN BUS C TO FOUR SRB-RGA'S. 1 3

SECOND FAILURE (FAILING OPEN OF FUEL CELL NO. 2 MOTOR DRIVEN POWER CONTACTOR) CAUSES LOSS OF PRIMARY POWER FROM ORBITER MAIN BUS A. THIS WOULD CAUSE SIMULTANEOUS TOTAL LOSS OF POWER TO SRB-RGA'S 2, 3, AND 4 RESULTING IN LOSS OF THREE OF FOUR SRB-RGA'S.

### -DISPOSITION RATIONALE-

(A) DESIGN:

REFER TO APPENDIX D. ITEM NO. 3 - FUSE, HIGH CURRENT

(B) TEST:

REFER TO APPENDIX D. ITEM NO. 3 - FUSE, HIGH CURRENT

GROUND TURNAROUND TEST

ANY GROUND TURNAROUND CHECKOUT TESTING IS ACCOMPLISHED IN ACCORDANCE WITH OMRSD.

(C) INSPECTION:

REFER TO APPENDIX D. ITEM NO. 3 - FUSE, HIGH CURRENT

(D) FAILURE HISTORY:

FAILURE HISTORY IS TRACKED IN THE PRACA SYSTEM.

(E) OPERATIONAL USE:

NONE

- APPROVALS -

PAE MANAGER

: K. PRESTON

PRODUCT ASSURANCE ENGR: T. KIMURA

DESIGN ENGINEERING : J. GULSBY

NASA SSMA

NASA SUBSYSTEM MANAGER :