

No. 10-05-01-11R/02

SYSTEM: SUBSYSTEM: ASSEMBLY: FMEA ITEM NO.: CIL REV NO.: DATE: SUPERSEDES PAGE: DATE: CIL ANALYST:		Space Shuttle RSRM 10 Assembly Hardware/Interfaces 10-05 Field Joints and Kits 10-05-01		CRITICALITY C PART NAME:	CATEGORY: 1 Field Joint, Thermal Protection System (1)			
		10-0 M 31 J 227- 30 J	ul 2000 1ff. ul 1999	PART NO: PHASE(S): QUANTITY: EFFECTIVITY: HAZARD REF.:	(See Sect Boost (BT (See Sect (See Table BC-11	ion 6.0)) ion 6.0) e 101-6)		
APF	PROVED	BY:	1.0		DATE:			
REL	IABILITY	ENGINEE	ERING:	K. G. Sanofsky	<u>31 Jul 2000</u>			
ENG	GINEERIN	IG:		H. D. Huppi	<u>31 Jul 2000</u>			
1.0	FAILUR		FION:	Failure during operation (D)				
2.0	FAILUR	E MODE:		1.0 Structural failure				
3.0	FAILUR	E EFFEC	TS:	Breakup and loss of thermal prot systems causing loss of RSRM, S	ection system. D SRB, crew, and ve	ebris damao ehicle	ges adjacent STS	
4.0	FAILUR	E CAUSE	S (FC):					
	FC NO.	DESCRI	PTION			I	FAILURE CAUSE KE	Y
	1.1	Bondline	failure	of the cork or ablation compound				
		1.1.1	Bondir	ng surfaces not properly prepared	or adequately cle	aned	А	
		1.1.2	Bondir	ng material not properly mixed, app	plied, or cured		В	
		1.1.3	Conta	mination during processing			С	
		1.1.4	Proces	ss environments detrimental to bor	nd strength		D	
		1.1.5	Nonco	nforming material properties			Е	
		1.1.6	Bond s transp	strength degradation during assem ortation	nbly, handling, sto	orage, or	F	
		1.1.7	Bondli	nes not to required thickness			G	
	1.2	Vibration	and a	eroshear			Н	
	1.3	Nonconfe	orming	material properties			I	
	1.4	Cork or a	ablation	compound not manufactured or a	pplied to required	thickness	J	
	1.5	Aerohea	ting and	d plume radiation			к	
	1.6	Transpor	tation,	handling, or assembly damage			L	

DOC NO.	TWR-15	712	VOL	П
SEC	227	PAGE	1	

No. 10-05-01-11R/02

 DATE:
 31 Jul 2000

 SUPERSEDES PAGE:
 227-1ff.

 DATED:
 30 Jul 1999

Μ

- 1.7 Moisture, fungus, or age degradation
- 5.0 REDUNDANCY SCREENS:

SCREEN A: N/A SCREEN B: N/A SCREEN C: N/A

- 6.0 ITEM DESCRIPTION:
 - A thermal shield for the field joint and heater is installed at KSC per engineering drawings. It comprises two rows of machined cork either side of the joint heater, with one band covering the joint pin retainer band, and K5NA ablation compound filling the space between the rows of cork and covering the heater structure.
 - 2. Heater closeout material, composed of small amounts of machined cork and ablation compound used to cover heater cable connections. Materials are listed in Table 1.

TABLE 1. MATERIALS

Drawing No.	Name	Material	Specification	Quantity
1U77648	Assembly and Close out, RSRM, KSC	Composite of Various Components		1/motor
1U77160	Cork, Fwd and Aft Strip, FJPS	Sheet Cork	STW4-2700	Fwd 60/motor Aft 60/motor
1U77157	Thermal Barrier, Cork Paint	Sheet Cork	STW4-2700	A/R
		Moisture and Fungus Protection	STW4-9084	10 gal
	Ablation Compound, Cork-Filled (K5NA)	Ground Cork, Epoxy Resin, Curing Agent	STW5-3183 or MSFC-SPEC-1918	A/R
	Epoxy Adhesive, Silica-filled with Cab-O-Sil	Adhesive	STW4-3218 STW5-3837	75 lb
	Epoxy Resin Adhesive, Non- Asbestos	Epoxy resin and Curing Agent	STW4-3218	A/R

6.1 CHARACTERISTICS:

- 1. The Field Joint Thermal Protection System (FJPS) provides protection for field joint components from aerothermal environments during boost phase. Shielding, heat retention during prelaunch, or minimization of damage to components at water impact are not relevant to the failure mode analyzed.
- 2. Thermal protection for the joint heater, Kevlar heater retaining band, and other field joint components is provided by sections of thermally ablative cork bonded circumferentially around the case. Cork is supplied in cut sections of sheet cork that are machined to surface contours adjacent to the clevis and tang joint. Joint components are depicted in Figure 1. Formable ablation compound made of ground cork and epoxy resin is applied over the joint area between rings of sheet cork as depicted in Figure 1.
- 3. Heater closeout material, comprising ablation compound and small sections of machined cork, is used to provide thermal protection for heater cables and connectors in the area immediately forward and aft of each field joint. This area is the transition area between the forward and aft terminations of the systems tunnel FJPS in the vicinity of each field joint. Typical installations of heater closeout material are depicted in Figures 2 through 6.

576 4. After assembly of the FJPS, the entire exposed surface is coated with paint.

DOC	NO.	TWR-157	12	VOL	Ш
SEC		227	PAGE	2	

No. 10-05-01-11R/02

 DATE:
 31 Jul 2000

 SUPERSEDES PAGE:
 227-1ff.

 DATED:
 30 Jul 1999

576 4. After assembly of the FJPS, the entire exposed surface is coated with paint.

- 5. The circumferential FJPS structure and lesser parts referred to as heater close out material have identical materials and functions. All failure causes are relevant to the heater closeout material as well as components of the field joint FJPS that are installed circumferentially.
- 7.0 FAILURE HISTORY/RELATED EXPERIENCE:
 - 1. Current data on test failures, flight failures, unexplained failures, and other failures during RSRM ground processing activity can be found in the PRACA database.
- 8.0 OPERATIONAL USE: N/A

DOC	NO.	TWR-157	12	VOL	II
SEC		227	PAGE	3	

No. 10-05-01-11R/02

DATE: 31 Jul 2000 SUPERSEDES PAGE: 227-1ff. DATED: 30 Jul 1999

Figure 1. Cork Insulation Cross Section

DOC NO.	TWR-157	12	VOL	II
SEC	227	PAGE	4	

REVISION \underline{M}

No. 10-05-01-11R/02

DATE: 31 Jul 2000 SUPERSEDES PAGE: 227-1ff. DATED: 30 Jul 1999

Figure 2. Heater Cables and Connectors Closeout

DOC NO.	TWR-157	12	VOL	II
SEC	227	PAGE	5	

No. 10-05-01-11R/02

 DATE:
 31 Jul 2000

 SUPERSEDES PAGE:
 227-1ff.

 DATED:
 30 Jul 1999

Figure 4. Heater Cables and Connectors Closeout (Section B-B)

A035484a

DOC NO.	TWR-157	12	VOL	Ш
SEC	227	PAGE	6	

No. 10-05-01-11R/02

DATE: 31 Jul 2000 SUPERSEDES PAGE: 227-1ff. DATED: 30 Jul 1999

Section C-C Figure 5. Heater Cables and Connectors Closeout Section C-C)

A035485a

Section D-D Figure 6. Heater Cables and Connectors Closeout (Section D-D)

DOC NO.	TWR-157	12	VOL	Ш
SEC	227	PAGE	7	

No. 10-05-01-11R/02

 DATE:
 31 Jul 2000

 SUPERSEDES PAGE:
 227-1ff.

 DATED:
 30 Jul 1999

- 9.0 RATIONALE FOR RETENTION:
- 9.1 DESIGN:

F,L

F,L

- DCN FAILURE CAUSES
 - A,B,C,D 1. Fabrication process requirements for the field joint protection system at KSC are documented per engineering.
 - A,B,C,D,F,G,L
 Bond integrity is verified by performing pull tests on cork insulation discs at KSC. A test disc is a portion of a larger bonded-in-place sheet, which was isolated from the adjacent cork by use of a cutter. Bond integrity includes: 1) Verification of processes for surface preparation and cork bonding, 2) Verification of absence of bond degradation during assembly, and 3) Verification of bonding material application.
- 576 E,I 3. Required material properties and methods of validation are documented per engineering and the following reports:

		Thermal and	Development and Structural Analysis	Accontanco Tosting
		Cork		TMP 50021 (mointure test)
		Adhesive (Silica filled	TWR-50019	TWR-50212, TWR-60855
		<u>Epoxy)</u> Ablation compound		- TWR 50020 (moisture test)
		Paint		TWR-50021
<u>576 E,I</u>	3.	Required material pro engineering and the fol	operties and methods of va lowing reports:	lidation are documented per

Thermal and	Development and	
Material	Structural Analyses	Acceptance Testing
Cork	TWR-50017, TWR-50019	TWR-50021 (moisture test)
Adhesive (Silica-filled	TWR-50019	TWR-50212, TWR-60855
Epoxy)		
Ablation compound	TWR-50017, TWR-50019	TWR-50020 (moisture test)
(K5NA)		
Paint		TWR-66657

- E,I4. Silica-filled epoxy is made by mixing the curing agent (Part B) of the epoxy adhesive with microfine silicon dioxide. Properties of silica-filled epoxy are controlled by testing the separate ingredients.
 - Application and assembly of redesigned JPS and heater closeout material are per engineering. Thiokol engineering requires that cork be undisturbed during initial hours of cure.
 - For shipment to KSC, cork segments and other FJPS components are packed and packaged to provide protection against deterioration and damage during normal commercial transportation and handling and known storage conditions for a period normally not exceeding one year per engineering drawings.
- F,L 7. All FJPS surfaces where the paint is damaged are repainted after verifying absence of fungus and exposed cork. If the FJPS is damaged, the damage is repaired per accepted procedures prior to repainting.

DOC NO. TWR-157	12 _v	_{OL} II
SEC 227	PAGE 8	3

CRITICAL ITEMS LIST (CIL)		
	DATE:	31 Jul 2000
No. 10-05-01-11R/02	SUPERSEDES PAGE:	227-1ff.
	DATED:	30 Jul 1999

- 8. Thiokol engineering requires application of adhesive to cork and corresponding bonding surfaces on the case and Kevlar bands. The cork is then pressed into position and mechanically restrained for a time. The process results in squeezing out excess adhesive, with the remainder constituting the "required bondline thickness."
- H,J,K

Н

Н

Μ

G

- 9. Wind-tunnel testing of the FJPS was performed as part of qualification testing of the FJPS. Three simulated field joints were tested. The test configuration consisted of FJPS components assembled to a tang-clevis joint as reported in TWR-17243. Results indicated that there were no bondline or structural failures and that temperatures of field joint components protected by cork correlated well with temperatures predicted by the thermal analysis. This directly demonstrates structural integrity of the bondlines, ablation compound, and sheet cork under aeroshear environments.
- 10. As reported in TWR-17243, qualification wind-tunnel testing of the FJPS included testing of heater cables, heater connectors, and closeout material. Three sets of heater cables and three sets of heater connectors were tested. Results indicated that the closeout material performed as designed, successfully withstanding the aeroshear environment with no evidence of structural failure or excessive erosion.
- 11. Vibration and pressurization testing of the FJPS was performed per CTP-0054 and results were reported in TWR-17245. Testing included environmental conditioning to prelaunch natural environments consisting of high temperature, high humidity, salt, fog, rain, and low temperature. After conditioning, the test article was subjected to flight and reentry random vibration, vehicle dynamics vibration, and water landing shock. Post-test visual inspections performed after each sub-test emphasized examinations for obvious de-bonds, delaminations, and any other degradation. Following testing and post-test inspections, pull tests were performed on cork discs isolated from the surrounding cork. Pull test data are used for materials and adhesives evaluation only, but these data and other test results verify the structural integrity of the FJPS, including absence of bond degradation during short-term exposure to worst-case natural environments.
- J,K 12. Cork material thickness is controlled per engineering drawings and specifications.
- J,K 13. Application of ablation compound is controlled per engineering drawings and specifications.
- J,K
 14. Results of a thermal analysis of the redesigned FJPS are reported in TWR-50017. The analysis used material thermal properties per TWR-40058. The analysis shows that the thermal protection provided by the cork and ablation compound in the new FJPS configuration results in temperatures of field joint components that are well within design constraints.
- J,K 15. Material properties and processes for the FJPS were demonstrated on development and qualification motors and reported in TWR-18764-14.
 - 16. The following sheet cork requirements are imposed to prevent moisture or fungus damage:
 - a. Packaging shall prevent absorption of moisture of the cork during shipment and storage. Packaging material shall be capable of being resealed during use.
 - b. Cork material shall have a minimum storage life of 2 years from date of receipt when stored at warehouse-ambient temperature. Each time a

REVISION M	DOC NO.	TWR-1571	2	VOL	Ш
	SEC	227	PAGE	9	

No. 10-05-01-11R/02

 DATE:
 31 Jul 2000

 SUPERSEDES PAGE:
 227-1ff.

 DATED:
 30 Jul 1999

container is opened, it is resealed to maintain material properties during storage. Storage life may be extended if the material passes retests.

- Μ
- 17. After installation, all exposed surfaces of the cork, adhesive, and ablative compound are coated with paint and conform to engineering drawings for the following:
 - a. Paint must have a low permeability to moisture and must be resistant to weathering and fungus growth. Test methods and acceptability requirements levied against these characteristics are per engineering.
 - b. Conformance to requirements on accelerated weathering, fungus resistance, and permeability are verified per the material qualification testing.
 - c. Paint has a minimum storage life per engineering.
- F,L,M 18. Cork and K5NA bond testing on aged TEM motors for over five years, maintained a positive structural margin of safety per TWR-64178.
- A,B,C,D,H,L
 19. An updated analysis was performed on the field joint protection system using Performance Enhancement (PE) environments. This structural analysis, using the PE environment, resulted in stresses essentially identical to those from the Generic Aero/Plume Heating Certification. All quoted stresses and positive margins of safety remain unchanged per TWR-66825-4.

DOC NO.	TWR-157	12	VOL	II
SEC	227	PAGE	10	

	DATE:	31 Jul 2000
No. 10-05-01-11R/02	SUPERSEDES PAGE:	227-1ff.
	DATED:	30 Jul 1999

9.2	TEST AN	D INS	SPEC ⁻	TION	:							
DON	FAILURE	CAU	SES a	and							0	
DCN	<u>15919</u>	(1)									<u> </u>	IL CODES
			1.	For	New Cork, Sh	eet verify:						
	E,I	(T)		a.	Density							ALR004
	E,I	(T)		b.	Tensile strer	ngth					ALR04	4,ALR045
	E,I	(T)		C.	Tensile elon	gation					ALR03	38,ALR039
	E,I	(T)		d.	Recovery							ALR025
	E,I	(I) (T)		e.	Flexibility						ALR01	3,ALR014
		(1)		1. a	Specific field	l						ALRU3U
	E,I F I	(1)		y. h	Workmansh	in						FAA005
	J.K			i.	Thickness	ip						AI R001
	M			j.	No shipping	or handling	damage					ALR023
	Μ			k.	Opened corl	c containers	are reseal	ed				ALR022
			2.	For	Retest Cork,	Sheet verify:						
	FI	(T)		а	Density							
	E.I	(T)		b.	Flexibility							ALR017
	É,I	ÌΤ)		C.	Specific hea	t						ALR035
			3.	For	New Cork, Fo	rward and A	.ft Strip, Fie	eld Joint	Protection S	System v	erify:	
	F,L			a.	No damage	prior to kittir	ıg					FAA001
			4.	For	New Thermal	Barrier, Cor	k, verify:					
	F,L			a.	No damage	prior to kittir	ıg					FAA003
			5.	For	New Paint, M	oisture and I	-ungus Pro	otection	verify:			
	FI	(T)		2	Color							
	E,I	(T)		b.	Nonvolatile (content						ANU0002
	E,I	(T)		с.	Viscosity	Jointoint						ANU018
	É,I	(Τ)		d.	Weight per g	gallon						ANU025
	E,I			e.	Certificate of	f Conforman	ce					ANU015
	E,I	<u> </u>		f.	Workmansh	ip						DJM012
	E,I	(1)		g.	Adhesion							DJM013
			6.	For	New Epoxy R	esin Adhesi	ve, Non-As	bestos v	erify:			
	E,I	(T)		a.	Filler conten	t (Part A)					AMD00	9,AMD013
	É,I	ÌΤ)		b.	Epoxide con	tent (Part A))				AMD00	2,AMD006
	E,I	(T)		C.	Titratable nit	rogen (Part	B)				AMD03	5,AMD039
	E,I			d.	Certificate of	f Conforman	ce					FAA014
	E,I	(T)		e.	Workmansh	ip						AMD015
	E,I	(1)		T.	VVorking life	nion staal t						AMD021
	⊏,1	(1)		g.	Tensile aune	esion steel-to	J-Sleer					AIVIDUS I
			7.	For	Retest Epoxy	Resin Adhe	sive, Non-	Asbestos	s, verify:			
	E,I	(T)		a.	Tensile adhe	esion steel-to	o-steel					AMD033
REVISIO	DN M							D00 N0	TWR-1	5712		Ш
	_							SEC		PAGE	I VUL	
									227		11	

				CRITICAL ITEMS LIST (CIL) No. 10-05-01-11R/02	DATE: SUPERSEDES PAGE: DATED:	31 Jul 2000 227-1ff. 30 Jul 1999
		8.	For	New Epoxy Adhesive, Silica-Filled, verify:		
E,I E,I	(T) (T)		a. b.	Working life Tensile adhesion steel-to-steel		FAA015 FAA016
		9.	For	Retest Epoxy Adhesive, Silica Filled, verify:		
E,I E,I	(T) (T)		a. b.	Working life Tensile adhesion steel-to-steel for storage life exte	nsion	FAC054 FAC055
		10.	KSC	c verifies:		
A,B,C,D,E G,I,J,K,L	E,F, (T)		a.	Life requirements, formulation, mixing, surface pre application, cure and physical properties for materi	paration, als applied at	000023
F,L,M			b.	No fungus or contamination upon TPS surface repa	air per OMRSD	OMD023
М			C.	Expiration date is not exceeded for materials instal	ed at KSC per	OMD034
A,B,C,D,				OMRSD File V, Vol I, B47GEN.160		OMD042
F,G,L	(T)		d.	Field joint cork bond pull test results comply with th requirements per OMRSD File V, Vol I, B09TP0.06	e 0	OMD024
A,B,C,D,N	Λ		e.	No visible contamination of TPS bonding surface a to cork installation per OMRSD File V, Vol I, B63FJ	rea just prior 0.011	OMD116

DOC NO.	TWR-157	12	VOL	II
SEC	227	PAGE	12	