SPAR - BRAMPTON (SSS) 9445 AIRPORT RD # Critical Items List **SRMS** CIL Ref#: 3141 Revision: 0 FMEA Rev: 0 BRAMPTON ONTARIO (884)3 **System:** SRMS Subsystem: ELECTRICAL SUB-SYSTEM Assembly Desc: Servo Power Amplifier Part Number(s): 51140F1177-3 51140F1177-5 Hern: Function: Motor Drive Amplifier Assembly Provides motor voltage based on demand from tachometer electronics. Commutates the motor drive voltage. Provides hardware current limiting, brake drive, direct drive functions and enables backup drive. Provides BITE circuits and BITE verification for MDA. Filter Board Assembly Filters 26V to SPA. Fitters secondary voltages to position encoder, commutator and techometer SCU. Provides backup rately to switch motor to backup drive. Failure Mode: Faise Backup Relay BITE. HWW Func. Screen Failures Criticality: Mission Phase: Orbit Cause(s): Filter Board Assembly Motor Drive Amplifier Assembly Backup retay phase BITE output stuck active. Backup retry phase BITE output stuck active. One of backup relay BITE phase detectors fails active. Eailure effect on unit/end item: Sackup relay 8/TE stuck active. Loss of MDA Inhibit override for subsequent brake falled OFF. All modes remain available. Worst Case: Loss of Joint Dynamic Braking. System unprotected from subsequent brake failed OFF. Redundant Paths: Manual Brakes Backup Drive. #### letention Rationale ### Design: Field Programmable Gats Arrays (FPGA's) and the Error Detection and Correction (EDAC) are semi-custom microcircuits in which the basic design functional elements are designed by the manufacturer. The interconnection of these elements is then customized by Spar to provide the functionality of the completed microcircuit. The design utilizes proven circuit techniques and is implemented using CMOS technology. This technology operates at low power and hence the device does not experience significant operating stresses. The technology is mature, and the basic device reliability is well documented. All stresses are additionally reduced by densiting the appropriate parameters in accordance with SPAR-RMS-PA.003 and verified by design review. This approach has a significant edvantage in that it reduces the quantity of discrete parts required in the assembly and also the complexity of the PWB and results in significant weight and volume savings. This type of semi-custom part has been successfully used in other space applications. The parts are qualified to the requirements of the applicable specification. They are 100% screened and burned in to the requirements of this Spar requirements document, Opto-isolators are subjected to the same quality and application controls as applied to discrete semiconductors. Resistors and capacitors used in the design are selected from established reliability (ER) types. Ufe expectancy is increased by ensuring that all allowable stress levels are denoted in accordance with SPAR-RMS-PA.003. All ceramic and electrolytic capacitors are routinely subjected to radiographic inspection in accordance with the requirements of MSFC-STD-365. pared: 18Sep96 by Fung, Bill Supersedes: N/A ## SPAR - BRAMPTON (SSS) 9445 AIRPORT RD ## Critical Items List SRMS CIL Ref#: 3141 Revision: 0 FMEA Rev: 0 BRAMPTON ONTARIO L684J3 The SPA board is fabricated using Surface Mount Technology (SMT). This is a PWB assembly lecthology in which the components are soldered to the solder pads on the surface of the PWB. The significant advantage of this technology is to enable the parts on the board to be more densety packed, to reduce to overall volume and weight of the assembly. The assembly process is highly automated. The parts are mounted on the boards using a computer controlled "pick and place" machine. The subsequent soldering operation is performed using a balt furnace, in which the time and temperature thermal profile that the PWB assembly is exposed to is lightly controlled and optimized to ensure proper part soldering attachment. The assembly is manufactured under documented procedures and quality controls. These controls are exercised throughout the assembly, inspection, and testing of the unit. This inspection includes workmanship, component mounting, soldering, and conformal coating to ensure that it is in accordance with the NHB 6300 standards. The SMT line used for the SPA PWB assembly has undergone a full qualification program, and assembles produced on this line are used in other space programs. The circuit board design has been reviewed to ensure adequate conductor width and separation and to confirm appropriate dimensions of solder pads and of component hold provisions. Parts mounting methods are controlled in accordance with MSFC-STD-154A, MSFC-STD-138 and SASD 2573751. These documents require approved mounting methods, stress relief and component security. #### Test: QUALIFICATION TESTS - The SPA is subjected to the following qualification testing: VIBRATION: Each axis of the QM is subjected to Flight Acceptance Vibration Test (FAVT), Qualification Acceptance Vibration Test (QAVT), and Qualification Vibration Tests (QVT) in accordance with the SPA Vibration Test Procedure (826586). The level and duration for FAVT is as per Figure 5 and Table 2 of 626586; the level and duration for QAVT is as per Figure 6 and Table 2 of 626586. At the end of the three successive random vibration test in each axis, both directions (+/-) of each of the axis is subjected to a shock pulse test as per Figure 9 of 828588. THERMAL/VACUUM: QM TVAC Test is in accordance with Figure 5 of the SPA TVAC Test Procedure (826688), with full Functional/Parametric Test performed at levels of +80 degrees C and -35 degrees C, and non-operating at -54 degrees C. The Qualification vacuum levels during TVAC is 1X10\*\*-8 torr or less. The lotal test duration is 7 1/2 cycles. The QM SPA is subjected to a minimum or 1000 hours of life testing and 1000 power On-Off cycles. EMC: The QM is subjected to EMC Testing (tests CE01/CE03, CE07, CS01, CS02, CS05, RE02, RS02, and RS03) in accordance with the SPA EMC test Procedure (826477) based on MIL-STD-461A. UNIT FLIGHT ACCEPTANCE TESTS - The FM SPA is subjected to the following acceptance testing: VIBRATION: FM Acceptance Vibration Test (AVT) in accordance with the SPA Vibration Test Propedure (625565), with level and duration as per Figure 6 and Table 2 of 626586. THERMALIVACUUM: FM TVAC Test is in accordance with Figure 6 of the SPA TVAC Test Procedure (826588), with levels of +49 degree and -25 degrees C for a duration of 1 1/2 cycles. The vacuum levels during Acceptance TVAC Test is 1X10\*\*-5 for or less. JOINT SRU TESTS - The SPA is tested as part of the joints (ambient and vibration tests only). The ambient ATP for the Shoulder Joint, Elbow Joint, and Wrist Joint are as par ATP.2001, ATP.2003, and ATP.2005 respectively. The vibration test for the Shoulder Joint, and Elbow or Wrist Joint are as per ATP.2002, ATP.2004 and ATP.2006 respectively. Through wire function, continuity and electrical isolation tests are performed per TP.283. MECHANICAL ARM REASSEMBLY - The SPA's/Joints undergo a mechanical arm integration stage where electrical checks are performed per TP,2007. MECHANICAL ARM TESTING - The outgoing split-arm is configured on the Strongback and the Manipulator Arm Checkout is performed per ATP.1932. FLIGHT CHECKOUT: PDRS OPS Checkout (all vehicles) JSC 16987. ### inspection: Units are manufactured under documented quality controls. These controls are secretised throughout design productment, planning, receiving, processing, fabrication, assembly, testing and shipping of the units. Mandatory inspection points are employed at various stages of fabrication, assembly, and test. Government source inspection is invoked at various control levels. EEE parts inspection is performed as required by SPAR-RMS-PA.003. Each EEE part is qualified at the part level to the requirements of the applicable specification. All EEE parts are 100% screened and burned-in, as a minimum, as required by SPAR-RMS-PA.003, by the supplier. DPA is performed as required by PA.003 on a randomly selected 5% of parts, maximum 5 pieces, minimum 3 pieces for each lot number/date code of parts received. All cavity devices are subjected to 100% P(ND). Wire is procured to specification MIL-W-ZZ759 or MIL-W-81381 and inspected and tested to NASA JSCM8080 Standard Number 95A. Receiving inspection ventice that all parts received are as identified in the procurement documents, that no physical damage has occurred to parts during shipment, that the receiving documents provide adequate traceability information and screening data clearly identifies acceptable parts. Parts are inspected throughout manufacture and assembly as appropriate to the manufacturing stage completed. These inspections include: Printed circuit board inspection for track separation, damage and adequacy of plated through holes, component mounting inspection for correct soldering, wire looping, strepping, etc. Operators and inspectors are trained and cartified to NASA NHB \$300.4(3A-1) Standard. Conformal coating inspection for adequate processing is performed using ultramolat light techniques. P.C. Board installation inspection includes checks for correct board installation, alignment of boards, proper connector contact matting, wire routing, strepping of wires etc. Post P.C. Board installation inspection includes cleanliness and workmanship (Spar/government rep. mendatory inspection point). # Critical Items List SRMS BRAMPTON ONTARIO LESAJ3 CIL Ref#: 3141 Revision: 0 FMEA Reva 0 Unit Pra-Acceptance Test inspection, which includes an audit of lower tier inspection completion, as built configuration verification to as design etc (mandatory inspection point). A unit Test Readiness Review (TRR) which includes verification of test personnel, test documents. test equipment calibration/validation status and hardware configuration is convened by QA in conjunction with Engineering, Reliability, Configuration Control, Supplier as applicable, and the government representative, prior to the start of any formal testing (Acceptance or Qualification). Unit level Acceptance Testing (ATP) includes ambient performance, thermal and vibration testing (Spanigovernment rep. mandatory inspection point). Integration of unit to Joint SRU - Inspections include grounding checks, connectors for bent or pushback contacts, visual, cleanliness, interconnect wiring and power up test to the appropriate Joint Inspection Test Procedure (ITP). Joint level Pre-Acceptance Test Inspection. includes an audit of lower tier inspection completion, as built configuration verification to as design stc. Joint level Acceptance Testing (ATP) includes ambient and vibration testing (Spar/government rep. mandatory inspection point). Mechanical Arm Reassembly - the integration of mechanical arm subassembles to form the assembled arm. Inspections are performed at each phase of integration which includes electrical checks, through wiring checks, wiring routing, interface compectors for bent or pushback contacts etc. Mechanical Arm Testing - Strongback and flat floor ambient performance test (Spar/government rep. mandatory inspection point). OMRSD Offline: Power-up arm. Verify no Backup Relay BITE errors. OMRSD Online None. Installation: OMRSD Online Power-up arm. Verify no Sectorp Relay BITE errors. Turnaround: Screen Failure: A; Pass B: Page C: Pass Crew Training: The crew will be trained to turn RMS power to off if brakes fall to stop arm. Grew Action: None. For subsequent failure crew must turn RMS power awaich to off to apply brakes. Operational Effect: None, Subsequent failure in autobraking may cause joint runaway. Mission Operate under vernier rates within approximately 10 ft of structure. The operator must be able to detect that the arm is responding properly to Constraints: commands via window and/or CCTV views during all arm operations. Auto trajectories must be designed to come no closer than approximately 5 it from structure. | | Position | Telephone | Date Signed | 8tatus | |-------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | tz, Michael / SPAR-BRAMPTON | Systems Engineer | | | | | olganid, Lana / SPAR-BRAMPTON | | | | Signed | | ca, Craig / SPAR-BRAMPTON | | | | Signed | | _ | | | | Signed | | _ | | . , | | Signed | | | KMB Flopba Engineer JSC | (713) 483-4072 | 981q <u>A90</u> | Signed | | - | | gaard, Lena / SPAR-BRAMPTON Reliability Engineer a. Craig / SPAR-BRAMPTON Technical Program Manager nn, George / JSC-ER RMS Subsystem Manager | Z, Michael / SPAR-BRAMPTON Systems Engineer 4634 Igaard, Lena / SPAR-BRAMPTON Reliability Engineer 4590 a. Craig / SPAR-BRAMPTON Technical Program Manager 4892 nn, George / JSC-ER RMS Subsystem Manager (281) 483-1516 | Z, Michael / SPAR-BRAMPTON Systems Engineer 4634 06Mar98 Igaard, Lena / SPAR-BRAMPTON Reliability Engineer 4590 06Mar98 06Mar9 | upared: 18Sep95 by Fung, Bill Supersedes: N/A