
Ground Operations Aerospace Language

GOAL

Final Report

Volume II

Compiler

(NASA-CR-136780) GROUND OPERATIONS N74-15888
AEROSPACE LANGUAGE (GOAL). VOLUME 2:
COMPILER Final feport (International
Business Machines Corp.) --265-p BC Unclas
$15.25 CSCL 09B G3/08 28966

31 July 1973

Ground Operations Aerospace Language

GOAL

Final Report

Volume II

Compiler

Contract NAS 10-6900

Approved by: Q L, l
'J.W. a ger 1

SSystems Programming and
Advanced Programs

31 July 1973

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION--------------------------------- 1-1

2.0 COMPILER SPECIFICATIONS-------------------------- 2-1

2.1 Syntax Specifications--------------------- 2-1
2.1.1 Syntax Equation Translation Example--------- 2-7
2.1.2 Parsing Example----------------------------- 2-7
2.2 Syntax Processor---------------------------- 2-7
2.3 Input Processor----------------------------- 2-12
2.4 Parsing Routines--------------------------- 2-12
2.4.1 General Purpose Parsing Routines------------ 2-13
2.4.2 Special Purpose Parsing Routines------------ 2-13
2.5 Compiler Diagnostics---------------------- 2-13
2.6 Compiler Output Reports------------------- 2-14
2.6.1 Source Record Listing-------------------- 2-14
2.6.2 Expanded Source Statement Listing--------- 2-14
2.6.3 I,nternal Name Cross-Reference Listing------- 2-15
2.6.4 Statement Label Cross-Reference Listing----- 2-15
2.6.5 Function Designator Cross-Reference Listing- 2-15
2.6.6 Diagnostic Summary------------------------- 2-15
2.6.7 Compiler Directives----------------------- 2-16
2.7 Intermediate GOAL Data Generator------------ 2-29

3.0 COMPILER SOFTWARE DESCRIPTIONS --------------------- 3-1

3.1 Syntax Processor---------------------------- 3-1
3.1.1 Initialization Section---------------------- 3-1
3.1.2 Input Section----------------------------- 3-2
3.1.3 Parser Section---------------------------- 3-2
3.1.4 Action Routines---------------------------- 3-3
3.1.5 Subroutines---------------------------- 3-5
3.1.6 Variable Descriptions--------------------- 3-6
3.1.7 Syntax Table Definition------------------- 3-10
3.1.8 Diagnostics ---------- ---------------- 3-15
3.2 Compiler-------------------------------- 3-17
3.2.1 Mainline Programs-------------------------- 3-17
3.2.2 SUBXX Action Routines--------------------- 3-41
3.2.3 Intermediate Text Output Formats ---------- 3-102
3.2.4 Chain Definitions------------------------- 3-178
3.2.5 Common Definitions------------------------ 3-191

APPENDIX A GOAL Cataloged Procedures------------------- A-1

APPENDIX B GOAL Diagnostic Messages-------------------- B-1

i

TABLE OF CONTENTS (Cont)

Section Title Page

APPENDIX C Syntax Equations (Machine Printout)

APPENDIX D GOAL Mainline Routines (Machine Printout)

APPENDIX E GOAL Mainline Auto-Flow (Machine Printout)

APPENDIX F GOAL Action Routines (Machine Printout)

APPENDIX G GOAL Action Auto-Flow (Machine Printout)

APPENDIX H Data Bank Routines (Machine Printout)

APPENDIX I Data Bank Auto-Flow (Machine Printout)

APPENDIX J Utilities (Machine Printout)

APPENDIX K Utilities Auto-Flow (Machine Printout

ii

1.0 INTRODUCTION

This volume identifies and describes the principal elements-and functions
of the GOAL Compiler. It is the result of implementation efforts based
on specifications provided by NASA/KSC ih publications, TR-1228, Ground
Operations Aerospace Language (GOAL) Textbook, and TR-1213, Ground
Operations Aerospace Language (GOAL) Syntax Diagrams Handbook, both
dated 16 April 1973.

A general description of the system is presented in Section 2, Compiler
Specifications. This Section provides an overview of the elements that
comprise the GOAL System. It describes the technique used to transcribe
the syntax diagrams into machine processable format for use by the parsing
routines. An explanation of the parsing technique used to process GOAL
source statements is also included. The Compiler diagnostics and the
output reports generated during a GOAL compilation are explained.

A detailed description of the GOAL program package is presented in Section 3,
Compiler Software Descriptions. This Section includes a write-up for each of
the FORTRAN subprograms. In addition, the formats for the Intermediate Text
and SYMTAB chain definitions are described. The "common" communication cells
required are identified by name, location, and usage.

Appendices are included to provide the user with the cataloged procedures
used to generate/maintain the GOAL System on the IBM S/360-40 computer
system. In addition, listings of the Syntax Table, FORTRAN programs, and
Auto Flow charts are provided. The diagnostic messages which may be en-
countered during the compilation of a GOAL Procedure are listed by message
number.

1-1

2.0 COMPILER SPECIFICATIONS

The principal functions of the GOAL Language compiler are:

o To accept a GOAL program as input on punched cards.

o To parse GOAL statements according to syntax diagrams.

o To generate diagnostic messages for statement errors.

o To generate Intermediate GOAL data.

To support these functions the following principal software elements
are provided:

o Syntax specifications (equations) for GOAL Language.

o Syntax processor.

o Compiler input processor.

o Parsing routines.

o Diagnostics routine.

o Output report generator.

o Intermediate GOAL data generator.

The relationship between these items is shown in Figure 2-1. They
are described in further detail in the following sections.

2.1 SYNTAX SPECIFICATIONS

The GOAL Language is specified by a set of syntax diagrams which define
all variations of GOAL statements. These diagrams are transcribed into a
modified Backus Naur Form. The syntax of this notation is described,
using syntax diagram format, in Figure 2-2.

Modified BNF statements are processed by the GOAL SYNTAX GENERATION
PROGRAM to generate syntax tables which are subsequently used by the
GOAL compiler to parse GOAL language statements.

The set of statements describing the GOAL syntax are arranged as a group.
The order is not important, however, the last statement must be 'END'.

Each statement may use up to twenty cards. The end of statement is
indicated by the character, ';'.

Each statement, (except 'END'), defines a syntactical element of the GOAL
LANGUAGE. This element may be referenced by other statements. The symbolic

2-1

name of the syntactical element being defined appears on the left of the
character, '=', in the Modified BNF statement. Each element including the
'ROOT' element must be defined ONCE in the input group. The 'ROOT' element
is the top of the 'syntax tree'. All valid GOAL statement variations can
be derived starting with the 'ROOT' element.

Each definition statement is in either SEQUENTIAL or ALTERNATE form. The
sequential form indicates that all items specified on the right of the
character '=' must be processed or identified to satisfy the definition
of the syntactical element associated with that statement. The alternate
form indicates that any item identified on the right of the character, '=',
will satisfy the definition. In both cases comparison proceeds from left
to right. Items in the alternate form are separated by the character,
''. Sequential and alternate forms cannot be mixed in the same statement.

Sequential or alternate items may be of the following types:

1. REFERENCE - In this case the item is the name of a syntactical
element. Its definition must be satisfied for identification
of the item.

2. FIXED TEXT - This item is a quoted string of characters. The
string must be found, in the GOAL statement being parsed, in
the indicated order for identification of the item.

3. ACTION CALL - This item identifies an action routine to be per-
formed at this point in the parse. Examples would be: Flag
statement type, verify labels/symbols, build lists, write out
intermediate data.

4. ERROR CHECK - The parsing algorithm will normally 'back up'
to try alternatives if a definition is not satisfied. If
an error check is processed the parse cannot 'back up' past
it. The numbered error message is given in this event.

The items, REFERENCE and FIXED TEXT, may be repeated zero to n times in
a GOAL language statement.

Zero repetition would indicate an optional construction. N repetition is
used to indicate 'feed back' loops.

Replication is indicated, in Modified BNF, by special characters immediately
following the item to which they apply.

Three types of replication are provided:

SPECIAL CHARACTER DEFINITION

? item may be absent or used once.

*N item may be absent or used N times.

+N item must be used 1 to N times.

N may be a three digit number. If it is exceeded an error message is given.
If it is Zero or not specified no limit is used, (N is indefinite).

2-2

GOAL STANDARD
LANGUAGE REPORT - REPORTS
INPUT GENERATOR

IINPUT

PROCESSOR '- DIAGNOSTICS SOURCE,
ROUTINES TABLES,

L ERRORS,
XREF, ETC.

I 'INTER-
DATA ACCESS PARSER INTERMEDIATE MEDIATE
BANK METHOD - GOAL DATA GOAL TO TRANSLATOR
FILE SYNTAX GENERATOR DATA

TABLES FLEIFILE

SYNT SYNTAX SYNTAX

EQUATIONS PROCESSOR FILE
COMPILER

SYNTAX COMPILER UP TO 50
DIAGRAMS SUPPORT SYNTO 50
IN MODIFIED PROGRAM SYNTAX

BNF NOTATIONTABLES

Figure 2-1.

GOAL DEFINITION END
SYNTAX 1 ' STATEMENT I STATEMENT I

ALTERNATE

DEFINITION REFERENCE
STATEMENT NAME

_ _

L-- J L r L

SEQUENCE

L. J

[I r r I I
ALTERNATE ENTRY I -- I ENTRY

L J L J L J

SEQUENCE II ENTRY

L L

r-- -N
I STATEMENT I END

L J

REFERENCE
I NAME I I CHARACTER

L J L J

Figure 2-2 (1 of 3)

2-4

F i

REFERENCE

L

r -
FIXED
TEXT

r -L J

ENTRY

ACTION
CALL

L J

ERROR
CHECK

REFERENCE
I REFERENCE I I NAME-- REPLICATOR

I MN

L J LJ L

FIXEDFITEXT ED - CHARACTER tREPLICATOR
TEXT

I ACTION #3E NUMBER REPL I CATOR
CALL

L J L J L J

Sr---
ERROR
CHECK I- --- $ NUMBER

L J L

+2

r + + r

I REPLICATOR NUMBER

L J
L

Figure 2-2 (2 of 3)

r 7

I NUMBER I ANY DIGIT 0...9

L J

r 1

CHARACTER 1 ANY VALID GOAL CHARACTER EXCEPT ENDING
DELIMETER WHERE USED

N IS A LARGE INTEGER. ITS VALUE IS IMPLEMENTATION DEPENDENT.

Figure 2-2 (3 of 3)

2-b

2.1.1 Syntax Equation Translation Example

To illustrate the technique for translating syntax diagrams to modified
BNF, the BEGIN SUBROUTINE statement, (Figure 2-3), is converted to the
syntax equations, (Figure 2-4).

Note that intermediate syntactical elements are defined to represent
various paths through the syntax diagram. Equations are also provided
to define lower level syntactical elements such as LETTER and NUMERAL.
The value of the replicator, K, is not specified, thus no limit is
imposed during parsing. The action routines, (#101 to #105), perform
the actual compilation process and test for usage errors. The syntax
equations (tables) serve to identify the statement format and cue action
routines according to the structure of the statement.

2.1.2 Parsing Example

The equations shown in Figure 2-4 were processed by the syntax processor
to generate tables which were then used by a 'prototype' parser to process
several variations of the BEGIN SUBROUTINE statement.

The results of this run are shown in Figure 2-5. This listing is not an
example of compiler output. It is only intended to show the operation
of the parser and the relationship between syntax diagrams and the state-
ment being parsed.

2.2 SYNTAX PROCESSOR

The syntax processor is a stand-alone program which accepts input in the
form of syntax equations, (described in Section 2.1), and converts this to
syntax tables which are stored in the Syntax Table File for subsequent use
by the GOAL compiler parsing routines. This relationship is shown in
Figure 2-1. The syntax File may contain up to fifty different syntax
tables of moderate size. This enables the use of language subsets or exper-
imental versions of a language syntax.

The syntax processor employs a basic parsing routine and a special syntax
table which is generated by the syntax file initialization program. In
general, the initialization program need only be used once. The initial-
ization program also reads in a character set record which is used by the
GOAL compiler to identify all letters, numerals, and symbols used in the
GOAL language. This technique enables functional substitution of one
character for another, (in compiler input), without regeneration of the
GOAL compiler itself.

The operation of the syntax file initialization program and the syntax
processor is shown in Figure 2-6.

2-7

GOAL SYNTAX DIAGRAM NUMBER 8 BEGIN SUBROUTINE

r BEGIN
SUBROUTINEI BEGIN SUBROUTINE I NAME I 1
STATEMENT L 47

DEFINES SUBROUTINE NAME

K

C07 - D07
/ PARAMETER

A07 B07

Figure 2-3

2-8

* GOAL SYNTAX EQUATION FOR BEGIN SUBROUTINE STATEMENT

<BEGIN SUBROUTINE STMT> = 'BEGIN SUBROUTINE' #101 $101 .<NAME> #102
$102 <A07> #103 ;

<A07> = <807> <(C07> ;
<807> = ';' #104 ;
<(C07> = <PARAMETER> #105 <007>* ';' ;
<D07> = I,' <PARAMETER> #105 ;

* COMMENTS FOR ACTION AND ERROR ROUTINES

* #101- INITIALIZE LIST FLAGS AND COUNTERS FOR BEGIN SUBROUTINE STMT.

* $101- ERROR - INCORRECT SUBROUTINE NAME. STOP PARSING WITH $101.

* #102- SAVE THE SUBROUTINE NAME.
$* 102- ERROR - INCORRECT PARAMETER. STOP PARSING WITH $102.

* #103- PARSE IS OK. PREPARE OUTPUT LIST. RETURN CONTROL TO THE PARSER.

* #104- SET LIST FLAG TO EMPTY. THERE ARE NO PARAMETERS.

* #105- PUT PARAMETER IN THE LIST. INCREMENT LIST COUNTER.

* THE REPLICATOR FOR REFERENCE 007 IS K.

<LETTER> =
'A' I 'B' I 'C' I 'D' I 'E' I 'F' I 'G' I 'H' I 'I' I 'J' I
'K' I 'L' I 'M' I 'N' I 'O' I 'P I 'Q' I 'R' I 'S' I 'T' I
'U' 1 'V' I 'Wo I 'X' I 'Y' I Z'

<NAME> =
'(I' <LETTER> <NAME 1>*31 ')' ;

<NAME 1> =
<LETTER> I <NUMERAL> ;

<NUMERAL> =
'0' I '1' I '2' I '3' I '4' I '5' I '6' I '7' I '8' I '9' ;

<PARAMETER>
<NAME> ;

END ;

Figure 2-4

2-9

BEGIN SUBROUTINE (4XY) (KSC) ;

ACTION routine 101 called
ERROR number 101 occurred - parse terminated

BEGIN SUBROUTINE (XY4) (KSC) ;

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 103 called

BEGIN SUBROUTINE (XY41 (KSC),(KSCl),(KSC2) ;

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 105 called
ACTION routine 105 called
ACTION routine 103 called

BEGIN SUBROUTINE (XY4) (KSCI,(KSCl),(2KSC) ;

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 105 called
ERROR number 102 occurred - parse terminated

BEGIN SUBROUTINE (ABC) (DEF) #$/I ;

ACTION Poutine 101 called
ACTION routine 102 called
ACTION routine 105 called
ERROR number 102 occurred - parse terminated

BEGIN SUBROUTINE (ABCD) ;

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 104 called
ACTION routine 103 called

NOTE: Six GOAL Begin Subroutine statements were compiled using the syntax
tables derived from the syntax equations. Three of the statements
were determined to contain syntax errors and the appropriate error
numbers were selected for printing on this listing. The three
correct statements compiled and the appropriate action routines
were called for processing elements of the statements.

Figure 2-5
2-10

INITIALIZATION

LISTINGS

SPECIAL
TABLES

SYNTAX FILE/) INITIALIZATIO

CHARACTER PROGRAM
RECORD

SYNTAX
FILE

SYNTAX
EQUATIONS SYNTAX

S PROCESSOR

SYNTAX TABLE
LISTINGS

Figure 2-6.

2-11

2.3 INPUT PROCESSOR

The Input Processor controls all inputs to the GOAL compiler. These inputs
come from the following sources:

1. SOURCE DECK - A GOAL program which the user supplies for
the GOAL compiler.

2. MACRO FILE - A file consisting of macro 'bodies'. These
'bodies' are placed in the macro file whenever a macro is
defined. They are retrieved from the file whenever expan-
sion or execution of one is desired. The Input Processor
will determine when records from this file are to be input
to the GOAL Compiler for parsing.

3. SUBROUTINE FILE - A file consisting of copies of subroutines
which were embedded in a GOAL program. The Input Processor
will determine when records from this file are to be input
to the GOAL compiler for parsing.

4. DATA BANK - Copies of macro bodies are contained in the Data
Bank. The Input Processor will determine when macro records
from the Data Bank are to be input to the GOAL compiler for
parsing.

The Input Processor also scans all inputs, when applicable, for abbreviations.
When an abbreviation is found, the proper substitution is made.

If, at any time during a GOAL compilation the source deck is depleted,
prior to encountering an END statement, the Input Processor will log
an error to this effect and terminate the compilation.

2.4 PARSING ROUTINES

The GOAL compiler will utilize a table guided top-down parsing algorithm.
The tables used by the parser are generated as described in Section 3.2.
The parsing routines are of two types:

1. GENERAL PURPOSE - These routines form the basic parser.
They are used by all syntax tables. They perform the input
statement scan according to the top-down technique, flag
unrecognizable constructions, and cue the execution of
action routines according to the structure of the input
statement.

2. SPECIAL PURPOSE - These are the action routines which provide
processing to support recognition and testing of specific
syntactical elements such as labels, variables, macros, and
subroutines.

2-12

2.4.1 General Purpose Parsing Routines

The primary function of these routines is to scan statements in the input
stream and recognize permissible constructions according to the contents
of the syntax tables. The recognition criterion is simple appearance. As
constructions are recognized the parse continues until the entire statement
has been processed. If a construction is not recognized, alternate definitions
are tested. If none is satisfied, the invalid field is marked and a diagnostic
message is given according to the last error checkpoint processed from the
syntax tables. These routines also test maximum repetition counts when
specified in the syntax equations. When a construction is successfully
identified in the input stream these routines may cue the execution of a
special purpose action routine specified in the syntax tables.

2.4.2 Special Purpose Parsing Routines

These are the action routines cued by the general purpose parsing routines.
They may perform any of the following types of functions:

1. Specialized compiler support such as macro definition, macro
expansion, and subroutine processing.

2. Symbol table operations for definition and reference.

3. Usage validation for any syntactical element of the GOAL
Language.

The special purpose parsing routines may signal a no-compare condition to
the basic parser. In this case alternate definitions will be tested or a
diagnostic message will be given. In this way the special purpose routines
may resolve the difference between syntactical elements which have similar
appearance but different meanings.

2.5 COMPILER DIAGNOSTICS

Two basic types of errors are recognized in the input statements to the GOAL
compiler. These are:

1. Syntax errors - The appearance of the statement does not
conform to any permissible variation described in the GOAL
Syntax Diagrams. In this case the parse is terminated
for the current statement.

2. Usage errors - The statement is syntactically correct, however,
some valid construction is incorrectly used. In this case the
parse may continue to process the remainder of the current
statement.

In both cases the statement is flagged in the expanded statement listing,
(see Section 2.6). A mark is placed under the field in which the error
occurred and all relevant data is logged for use in the diagnostic summary
report.

2-13

2.6 COMPILER OUTPUT REPORTS

The following reports will be provided on request, by the GOAL compiler.

1. Source Record Listing

2. Expanded Source Statement Listing

3. Internal Name Cross-Reference Listing

4. Statement Label Cross-Reference Listing

5. Function Designator Cross-Reference Listing

These reports may be requested using compiler directives described in sub-
section 2.6.7. The reports are described in greater detail and examples
are given in the following sub-sections. The examples are intended to
illustrate the contents and organization of the reports. These reports
are available for the main GOAL program and GOAL subroutines.

2.6.1 Source Record Listing

This report contains a listing of all source records processed by the GOAL
compiler. The records are assigned sequence numbers to facilitate reference
from diagnostic messages. An example of this report is given in Figure 2-7.

2.6.2 Expanded Source Statement Listing

This report contains a listing of all GOAL statements processed by the compiler.
Each statement is assigned a sequence number for reference in other output
reports. This sequence number has a plus '+' sign next to it if the state-
ment was part of a macro body being expanded. When the first valid procedural
statement is encountered, a new page is started and the comment

$ ********** BEGIN OPERATING STEPS ********* ;

is printed as the first line of this page. The beginning of a GOAL statement
will start on a new line in this report. If a statement contains an error,
the word ** ERROR ** will be placed in the margin preceding the statement
number and an asterisk (*) will be placed under the field in error. All
abbreviations and replacements will be expanded. Text replacement will be
performed subject to the following rules:

1. If the replacement text field is the same size as the original
text field, a simple substitution is performed.

2. If the replacement text field is smaller than the original text
field, it is inserted left-justified and any remaining original
text is replaced by blanks.

3. If the replacement text field is larger than the original text
field, the statement is expanded in size to provide space for
the replacement text.

2-14

4. A record is not expanded in size if it contains blank areas
sufficient to contain replacement text. That is, the position
of non-replacement text is not affected.

5. If an expanded record cannot be printed on a single line, addi-
tional line(s) are used to contain the overflow.

The above rules were chosen to give the user control of the format of this
report. When the letter 'S' is used to represent a step number instead of
the word 'STEP', this report substitutes the word 'STEP' according to the
rules above. An example of this report is given in Figure 2-8.

2.6.3 Internal Name Cross-Reference Listing

This report gives a listing of all internal names defined or referenced in
a GOAL program. The names are listed in alphabetical order. The statement
numbers refer to the sequencing given in the expanded source statement list-
ing. Type and size attributes are given. Undefined and unreferenced names
are flagged. An example of this report is given in Figure 2-9.

2.6.4 Statement Label Cross-Reference Listing

This report gives a listing of all statement labels defined or referenced in
a GOAL program. The labels are listed in ascending sequence. The statement
numbers refer to the sequencing given in the expanded source statement listing.
Undefined and unreferenced statement labels are flagged. An example of this
report is given in Figure 2-10.

2.6.5 Function Designator Cross-Reference Listing

This report produces two listings. The first listing contains all of the
Data Bank names with their revision labels and a Data Bank reference number.
These are listed in alphabetical order.

The second listing contains all of the Function Designators referenced in a
GOAL program. These are listed in alphabetical order. Relevant information
such as type, address and Data Bank number is listed. The Data Bank number
which is listed corresponds to the Data Bank number in the listing of Data
Bank names. This enables the user to identify the name of the Data Bank from
which a given Function Designator was retrieved. Statement numbers refer to
sequencing given in the expanded source statement listing. Undefined Function
Designators are flagged. An example of this report is given in Figure 2-11.

2.6.6 Diagnostics Summary

This report gives a listing of all warnings and errors detected in a GOAL
program. The following warnings are generated if they exist:

1. Unreferenced Internal Names

2. Unreferenced Step Numbers

2-15

The following errors are generated if they exist:

1. Parsing errors

2. Undefined internal names

3. Undefined step numbers

4. Undefined Function Designators

5. Step numbers referenced on a Disable Statement, but not
defined on a when Interrupt Statement

6. Step numbers referenced on a Release Statement, but not
defined on a Concurrent Statement

Parsing errors are recognized during a GOAL compilation and are flagged
and marked in the expanded source statement listing. All other warnings
and errors are determined after the compilation and may not be flagged
in the expanded source statement listing. An example of this report is
given in Figure 2-12.

2.6.7 Compiler Directives

The following GOAL statements are provided to enable the user to control
compiler options. None of these statements is mandatory. They are
individually described in the following sections. The default action is
explained, if applicable, when they are not used. Syntax equations for
these statements are shown in Figure 2-13.

*SEQ n ;

This statement is used to specify the size of the sequencing field of the
input records.. This field is taken to be the last (n) characters of each
record. The sequencing field is ignored by the GOAL compiler. If this
statement is not used the entire input record is processed. O<n-lO.

*EDIT ONLY ;

This statement is used to suppress generation of intermediate GOAL (object)
data. This expedites compilation for the purpose of obtaining listings and
error checks. If this statement is not used the intermediate GOAL data is
generated.

*LIST option, option, ... option ;

This statement is used to request generation of specific GOAL output reports.
The options may be:

SOURCE, EXPAND, LABELS, SYMBOLS, FDS, DIAG

2-16

These correspond to the reports described earlier in this section. If
the word list appears with no options, then no reports will be generated.
The diagnostic summary will always be generated when errors or warnings
are detected during a compilation. If this statement is not used all of
the above reports will be generated.

The following compiler directives affect only the format of the expanded
statement listing.

*TITLE (... TEXT CONSTANT ...) ;

The text constant is printed on the top line of each page. If this state-
ment is not used this portion of the top line is left blank. The length of
the text constant must not exceed 100 characters.

*DATE (... TEXT CONSTANT ...)

The specified date is printed on the top line of each page. If this state-
ment is not used this field is left blank. The length of the text constant
must not exceed 8 characters.

*LINE a,b ;

(a) and (b) are integers indicating the number of lines per page and the
number of characters per line respectively. After printing (a) lines on
a given page, a new page will be started. After filling (b) characters
in a given line, a new line will be started. The value of (a) must be
between 1-32767 and the value of (b) must be between 80 and 110. If this
statement is not given,the value for (a) is taken to be 50 and the value
for (b) is 100. Note that the (b) value only applies when the expanded
statement cannot be printed on a single line.

*PAGE n

This statement is used to begin a new page and set the page counter to (n).
If (n) is not specified the page counter is not affected. The page number
is given on the top line of the listing.

*CONVERT ;

This statement has two functions:

1. If encountered while the compiler is in normal processing
mode, this statement will cause all short form GOAL state-
ments following it to be expanded to long form GOAL statements.

2. If encountered while the compiler is in the convert and punch
deck mode, this statement will cause the punch deck option to
be terminated and short form conversion will continue.

2-17

*CONVERT DECK ;

This statement has two functions:

1. If encountered while the compiler is in the convert mode,
this statement will cause a source deck to be punched.

2. If encountered while the compiler is in normal processing
mode, this statement will cause conversion of short form
to long form to start and also cause a source deck to be
punched.

Note: This statement causes the line size of the expanded source
statement listing to be set to 80 if not already there.
This causes the card images being punched to correspond
with the expanded source statement listing. The line size
compiler directive can appear while the compiler is in this
mode, but the line size specified will not take effect until
this mode is terminated. If no line size compiler directives
are encountered while in this mode, then the line size will
be restored to the value it was when the convert deck option
was encountered.

*CONVERT OFF

This statement causes all options of the convert statement to be terminated.
When this statement is encountered, the compiler will return to normal
processing mode.

2-18

GOAL 01 PAGE

GOAL COMPILER SOURCE RECORD LISTING

RECORD SOURCE RECORD

1 * TITLE (GOAL LISTING EXAMPLE), DATE (5NOV73)
2 BEGIN PROGRAM (ERROR TEST) REVISION I ;
3 USE (TERMINALS) ;
4 BEGIN MACRO XXX (TITLE), (NAME), (DATE) ;
5 DISPLAY TEXT (TITLE) TO <CRTI-O> ;
6 DISPLAY TEXT I(NAE.) TO <CRT1-2> ;
7 DISPLAY TEXT (DATE) TO <CRTI-3> ;
8 END MACRO ;
9 DECLARE NUMBER (NBR) = 100

10 DECLARE NUMBER INBI) = 10
11 GO TO S 1OO ;
12 S 200 WAIT 5 SECS ;
13 EXPAND AND EXECUTE XXX ,IGOAL PROCEDURE),(VATC),(5 NOV 1973),
14 VERIFY <UNDEFINED FUNCTION DESIGNATOR> IS ON, GO TO S 300
15 (NBR) = 10 ;
16 LET (NBI) = 20 ;
17 S 300 SET (UNDEFINED NAME) FUNCTIONS TO (ON);
18 DISPLAY TEXT (GOAL EXAMPLE) TO <CRTI-O> ;
19 DISABLE S 300 ;
20 DISABLE S 800 ;
21 RELEASE S 300 ;
22 RELEASE S 900 ;

23 DSP TXT (REDUNDANT PRESS REG ON COMMAND),
24 TXT (HAS BEEN ISSUED), TO <CRT2> ;
25 S 800 WTE 5 SECS ;
26 * CONVERT ;
27 DSP TXT (PRESENT VALUE OF STAGE INLET PRESS),
28 TO <CRT2-10> ;
29 S 900 DLY 5 SECS ;
30 * CONVERT OFF ;
31 END PROGRAM

Figure 2-7.

GOAL LISTING EXAMPLE
5NOV73 GOAL 01 PAGE

GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURCE STATEMENT

I BEGIN PROGRAM (ERROR TEST) REVISION I

2 USE (TERMINALSI ;
3 BEGIN MACRO XXX (TITLE), (NAME), (DATE) ;

DISPLAY TEXT &lE&&& TO <CRTI-O> ;

DISPLAY TEXT &2&&C TO <CRTL-2>
DISPLAY TEXT C3&&& TO <CRTI-3> ;

4 END MACRO ;
5 DECLARE NUMBER (NBR) = 100 ;

6 DECLARE NUMBER (NBl) = 10 ;

rF)

Figure 2-8. (1 of 2)

GOAL LISTING EXAMPLE 5NOV73 GOAL 01 PAGE 2

GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURCE STATEMENT

S ********** BEGIN OPERATING STEPS ********* ;

7 GO TO STEP 100
8 STEP 200 WAIT 5 SECS ;
9 XXX ,(GOAL PROCEDURE),(VATC),(5 NOV 1973),

10+ DISPLAY TEXT (GOAL PROCEDURE) TO <CRTI-O>
11+ DISPLAY TEXT (VATC) TO <CRTI-2> ;
12+ DISPLAY TEXT (5 NOV 1973) TO <CRTI-3> ;

** ERROR ** 13 VERIFY <UNDEFINED FUNCTION DESIGNATOR> IS ON, GO TO S 300 ;

** ERROR ** 14 (NBR) = 10 ;

15 LET (NBI) = 20 ;
** ERROR ** 16 STEP 300 SET (UNDEFINED NAME) FUNCTIONS TO (ON)

17 DISPLAY TEXT (GOAL EXAMPLE) TO <CRTI-O> ;
18 DISABLE STEP 300 ;
19 DISABLE STEP 800 ;
20 RELEASE STEP 300
21 RELEASE STEP 900 ;
22 DSP TXT (REDUNDANT PRESS REG ON COMMAND),

N) TXT (HAS BEEN ISSUED), TO <CRT2>
23 STEP 800 WTE 5 SECS ;
24 DISPLAY TEXT (PRESENT VALUE OF STAGE INLET PRESS),

TO <CRT2-10> ;
25 STEP 900 DELAY 5 SECS
26 END PROGRAM ;

Figure 2-8. (2 of 2)

GOAL 01 PAGE

INTERNAL NAME CROSS-REFERENCE LISTING

INTERNAL NAME TYPE SIZE DEFINED AT REFERENCED AT

INBR) NUMERIC 00001 0005 ** UNREFERENCED **
(NR1) NUMERIC 00001 0006 0015
IUNDEFINEDNAME) ** UNDEFINED ** 0016

IL

Figure 2-9.

GOAL 01 PAGE

STATEMENT LABEL CROSS-REFERENCE LISTING

LABEL DEFINED AT REFERENCED AT

S 0100 ** UNDEFINED ** 0007

S 0200 0008 ** UNREFERENCED **
S 0300 0016 0018 0020
S 0800 0023 0019
S 0900 0025 0021

Figure 2-10.

GOAL 01 PAGE

FUNCTION DESIGNATOR CROSS-REFERENCE LISTING

DATA BANK NAME DATA BANK REVISION LABEL DATA BANK NUMBER

ITERMINALS) 0001

Figure 2-11. (1 of 2)

GOAL 01 PAGE 2

FUNCTION DESIGNATOR CROSS-REFERENCE LISTING

FUNCTION DESIGNATOR TYPE ADDRS DATA BNK REFERENCED AT

<CRTI-0> SYSTEM I/O 00100 0001 0010 0017
<CRT1-2> SYSTEM 1/O 00102 0001 0011
<CRTI-3> SYSTEM 1/0 00103 0001 0012
<CRT2> SYSTEM 1/0 00002 0001 0022
<CRT2-10> SYSTEM 1/0 00210 0001 0024
<UNDEFINEDFUNCTIONDESIGNATOR> ** UNDEFINED ** 0013

Figure 2-11. (2 of 2)

GOAL 01 PAGE

GOAL COMPILER DIAGNOSTIC SUMMARY

WARNINGS.

THE FOLLOWING INTERNAL NAMES WERE UNREFERENCED :

INBR)

THE FOLLOWING STEP NUMBERS WERE UNREFERENCED :

S 0200

ERRORS.

ERROR STMT STMT SOURCE RECORD
NUMBER NUMBER POSITION NUMBER ERROR DESCRIPTION

806 13 8 14 INVALID OR MISSING EXTERNAL DESIGNATOR.

995 14 1 15 THIS STATEMENT IS NOT RECOGNIZED AS A GOAL STATEMENT

PO 806 16 14 17 INVALID OR MISSING EXTERNAL DESIGNATOR.

c THE FOLLOWING INTERNAL NAMES WERE UNDEFINED :

(UNDEFINEDNAME)

THE FOLLOWING STEP NUMBERS WERE UNDEFINED

S 0100

THE FOLLOWING FUNCTION DESIGNATORS WERE UNDEFINED

<UNDEFINEDFUNCTIONDESIGNATOR>

THE FOLLOWING STEP NUMBERS WERE REFERENCED ON A DISABLE STATEMENT BUT NOT DEFINED ON A WHEN INTERRUPT STATEMENT

S 0300 S 0800

THE FOLLOWING STEP NUMBERS WERE REFERENCED ON A RELEASE STATEMENT BUT NOT DEFINED ON A CONCURRENT STATEMENT

S 0300 S 0900

END OF DIAGNOSTICS.

TOTAL NUMBER OF SOURCE RECORDS: 31
TOTAL NUMBER OF STATEMENTS: 26
TOTAL NUMBER OF WARNINGS: 2
TOTAL NUMBER OF ERRORS : 10
HIGHEST CONDITION CODE WAS 8

Figure 2-12.

COMPILER COMPILER
DIRECTIVES COMMAND
LI L

SEQUENCE
COMMAND

EDIT ONLY
COMMAND

LIST
COMMAND

TITLE
4 COMMAND

COMPILER 1
DIRECTIVES - -

L J DATE
COMMAND

LINE
COMMAND

PAGE
COMMAND

CONVERT
COMMAND

L N E E

SEQUENCE SEQ INTEGER

COMMAND NUMBER

(0-10)

Figure 2-13 (1 of 2)

2-27

EDIT ONLY
COAND -------- EDIT - ONLY

COMMAND

SYMBOLS --
- ESOURCE

LIST LIST EXPAND--
LIST

COMMAND
._ --__ LABELS

-- DIAG
-- FDS

99

TITLE
COMMAND TITLE (CHARACTER)

(BLANKS ARE SIGNIFICANT)

r7

DATE
COMMAND DATE - (CHARACTER)

(BLANKS ARE SIGNIFICANT)

LINE - LINE -4 INTEGER INTEGER
COMMAND NUMBER NUMBER

L . - J L_

(1-32767) (80-110)

PAGE INTEGER
COMMAND PAGE NUMBER

(1-999)

S- DECK
CONVERT I CONVERT -

COMMAND OFF
L J

Figure 2-13 (2 of 2)

2-28

2.7 INTERMEDIATE GOAL DATA GENERATOR

The intermediate text output from the compiler is a data set which represents,
in tabular fashion, all of the informational content of the GOAL source pro-
gram. This data set is sequentially processable and contains logical records
of varying length. Each logical record consists of a fixed header portion
followed by a varying length data portion. Total record content can be read,
written, and processed in a FORTRAN array of the INTEGER type. Each element
of the array is capable of storing a signed number or a single character.

The fixed header portion of each logical record contains the following
information:

o Intermediate Text Record Number - Each output text record is
numbered in an ascending sequence.

o Record Type - A single number to indicate the format of the
data portion of the record.

o GOAL Statement Number - If the intermediate text record resulted
from a specific GOAL statement, the sequence number (sequence
number printed on the listing by the compiler) is contained in
this field.

o GOAL Statement Label - If the record resulted from a specific
GOAL statement, and that statement was labeled in the source
program, the label (numeric representation) will be contained
in this field.

o Record Length - The actual length of this logical record.

Section 3.2.3 illustrates the logical content of the intermediate text data set.

2-29

3.0 COMPILER SOFTWARE DESCRIPTIONS

This section provides a more detailed description of the software elements of
the Syntax Processor and the GOAL Compiler which were identified in Section 2.

3.1 SYNTAX PROCESSOR

The following Section is a detailed descirption of the Syntax Generation
program described in Section 2.2.

The principal functions of the Syntax Generation program are:

o To accept a set of syntax equations as input on
punched cards.

o To parse these equations according to syntax
diagrams (Figure 2-2).

o To generate diagnostic messages for equation
errors.

o To generate a syntax table.

To support these functions, the Syntax Generation program contains the
following software elements:

o Initialization Section

o Input Section

o Parser Section

o Action Routines

o Subroutines

Each individual element of the Syntax Generation program is described
in Sub-sections 3.1.1 - 3.1.5.

A brief description of all variables used is in Sub-section 3.1.6.

A graphic description of the syttax table generated by the program is
given in Sub-section 3.1.7.

3.1.1 Initialization Section

All variables used by the program are declared with their initial
values.

The character table to be used is read into the variable CHRTAB.

3-1

A control card is read which contains the following information:

1. The number of the syntax table to be used by the program
for parsing.

2. The number to be assigned to the syntax table being
created by the program.

3. A flag which indicates whether or not a trace of the
program's operation is desired.

4. A flag which indicates whether the syntax table being
created is to replace an existing syntax table in the syntax file
or to be added to the syntax file.

The syntax table to be used by the program is read into the variable
STTAB.

3.1.2 Input Section

This Section is repeated each time a statement is completed. Its purpose
is to fill the input buffer with a statement, excluding comment cards. If
the input deck should become exhausted prior to encountering an end state-
ment, a warning message will be printed and an END statement will be
inserted.

3.1.3 Parser Section

This Section of the program functions the same as the Parser for the
GOAL compiler. According to the syntax table being used, it executes
sections of the program which make syntactical analysis of the input
stream. The Parser consists of the following parts:

o Initialization

o Entry Pointer Advancement

o Reference Routine

o Text Routine

o Subroutine Routine

o Error Checkpoint Routine

o Terminal Routine

3.1.3.1 Initialization. This part initializes entry into the syntax
table used by the program. It also initializes pointers used by the
other parts in processing the syntax table.

3-2

3.1.3.2 Entry Pointer Advancement. This part advances the initialized
entry pointer to the next entry in the syntax block. A branch is made to
either the reference routine, text routine, subroutine routine, or error
checkpoint routine, according to the type code found in the syntax table.

3.1.3.3 Reference Routine. This part is entered only if the syntax
table contains a reference to another block. It adjusts all of the pointers
and saves 'backup' information in case an error occurs. When all adjustments
have been made it returns to the entry pointer advancement part.

3.1.3.4 Text Routine. This part is entered only if the syntax table
contains a reference to a text constant. This routine determines if the
text in the input stream is the same as the text constant in the syntax
table.

3.1.3.5 Subroutine Routine. This part is entered only if the syntax
table contains a reference to an action routine. This routine will branch
to the specified action routine.

3.1.3.6 Error Checkpoint Routine. This part is entered only if the
syntax table contains a reference to an error checkpoint. This routine
places the error number in the header of the syntax block currently being
processed. If an error is detected after this point,the parse will termi-
nate and the error number will be logged.

3.1.3.7 Terminal Routine. This part is entered after the text routine,
subroutine routine, or error checkpoint routine have finished. This
routine determines if a syntactical error is valid (an alternative exists).
It also determines if parsing should terminate because of an error check-
point or completion of the syntax table for an equation.

3.1.4 Action Routines

The following sub-sections describe the functions of each of the action
routines used by the syntax generator program.

3.1.4.1 Action Routine #1. This routine looks for a name in the input
buffer. If a name is found, it is validated and added to the symbol table
if necessary. A return code of 0 is passed back to the Parser to signal
successful completion of this action routine. A return code of -1 is
passed back if this action routine fails to find a name or finds an invalid
name.

Note: This action routine uses a subroutine to add the name to
the symbol table (Sub-section 3.1.5.1).

3-3

3.1.4.2 Action Routine #2. This routine looks for an argument (name to
the right of the equal sign) in the input buffer. If an argument is found,
it is validated and added to the symbol table if necessary. A flag is set
to distinguish this element from the ROOT element. This is done because
this is a reference to an element and the ROOT is not referenced. The type
of argument is stored in the syntax table being built. A return code of 0
is passed back to the Parser. If an invalid argument is detected, a return
code of -1 is passed back to the Parser.

Note: This action routine uses a subroutine to add the argument
to the symbol table (Sub-section 3.1.5.1).

3.1.4.3 Action Routine #3. This routine looks for a text constant in the
input buffer. If a valid text constant is found, it is placed in the text
table and the correct type and location in the text table is placed in the
syntax table being built. A return code of 0 is passed back to the Parser.
If an invalid text constant is found, a return code of -1 is passed back to
the Parser.

Note: The text table being built by this routine is added to the
end of the syntax table after the program is completed. All
references to text constants are updated. All text constants
in this table are unique. Multiple references to a text
constant do not cause multiple copies to be inserted in the
table.

3.1.4.4 Action Routine #4. This routine looks for action routine refer-
ences in the input buffer. If a valid reference to an action routine is
found, its correct type code and action routine number are placed in the
syntax table being built. A return code of 0 is passed back to the Parser.
If an invalid action routine reference is made, a return code of -1 is
passed back to the Parser.

Note: This routine uses a subroutine to find a valid action
routine number (Sub-section 3.1.5.2).

3.1.4.5 Action Routine #5. This routine looks for error number references
in the input buffer. If a valid reference to an error number is found, the
correct type code and error number are placed in the syntax table being
built. A return code of 0 is passed back to the Parser. If an invalid
reference to an error number is made, a return code of -1 is passed back
to the Parser.

Note: This routine uses a subroutine to find a valid error
number (Sub-section 3.1.5.2).

3.1.4.6 Action Routine #6. This routine sets the second location of
the current header being built to two. This signifies that the syntax
equation being built is an alternative. A return code of 0 is passed
back to the Parser.

3-4

3.1.4.7 Action Routine #7. This routine is entered when a semicolon
is Parsed. It places a -l in the syntax table being built signifying
the end of an equation. This routine also reads another statement into
the input buffer.

3.1.4.8 Action Routine #8. This routine is entered when all syntax
equations being input to the new program have been processed. It resolves
all references in the new syntax table. It writes the symbol table in the
output report, flagging all undefined symbols. It scans the table and
determines which equation is the ROOT equation. It writes the new syntax
table into the syntax file, if no errors were detected, and terminates the
program.

3.1.5 Subroutines

The following Sub-sections describe the functions of each of the sub-
routines used by the Syntax Generation program.

3.1.5.1 Symbol Table Subroutine. This subroutine maintains the symbol
table used in generating a syntax table. It scans the input buffer search-
ing for a name. When a name is found, it adds it to the symbol table if
it is missing. It adjusts all pointers which relate to the symbol table
and tests for unrecoverable errors, i.e., symbol table overflow, etc.

3.1.5.2 Number Look-Up Subroutine. This routine scans the input buffer
searching for a number. If a valid number is found, an error message is
printed and parsing is terminated.

3.1.5.3 GETCHR. This subroutine reads a character table into a buffer
in the calling program. The character table read is the one used to
generate the syntax table which the program is using. This way the
correct interpretation of codes in the syntax table can be made.

3.1.5.4 GETSTX. This subroutine reads a syntax table into a buffer
in the calling program. The table number, buffer location, buffer size,
ROOT and return code are specified via parameters. The desired table is
loaded if adequate space is available. If space is not available or the
table does not exist, the appropriate return code is passed back to the
calling program. This subroutine also produces a listing of the table.

3.1.5.5 PUTSTX. This subroutine writes a syntax table into the syntax
file from a buffer in the calling program. The syntax table number,
syntax table buffer location, text table buffer location, text table
size, syntax table size, ROOT and return code are specified via para-
meters. The text table is placed at the end of the syntax table and
all text references are updated. This new table (combination syntax
and text table) is written into the syntax file and assigned the number
passed as a parameter. This subroutine also produces a listing of the
table.

3-b

3.1.6 Variable Descriptions

This section contains a brief description of all variables used in the
syntax generation program.

ALPHA Array, in CHRTAB - Defines the sections of the character
table consisting of the alphabetic characters.

AND Integer, in SPCHAR - Defines the special character '&'.

APFLAG Logical Flag - Used to signal a text constant in the input
buffer. Syntactical processing will continue when this flag
is turned off.

APOST Integer, in SPCHAR - Defines the special character (').

BLKHDR Integer - Index of header of block currently being processed.

BLNK Integer, in SPCHAR - Defines the special character ' ' (blank).

CHRTAB Array - Used to contain the character table read during ini-
tialization.

COL Integer, in SPCHAR - Defines the special character ':'.

COMMA Integer, in SPCHAR - Defines the special character ','

DIGIT Array, in CHRTAB - Defines the section of the character table
consisting of the numeric characters.

DOLLAR Integer, in SPCHAR - Defines the special character '$'.

EQ Integer, in SPCHAR - Defines the special character '='

ERRNO Integer - Contains the error number to be printed in the listing
when an error occurs.

GET Integer - Contains the number of the syntax table to be used
by the syntax generation program for parsing.

GT Integer, in SPCHAR - Defines the special character '>'.

I Integer - Used as pointer in the input buffer to determine where
the card being input is to be placed.

IK Integer - Used as multi-purpose counter.

IM Integer - Used as multi-purpose counter.

IN Integer - Used as multi-purpose counter.

3-6

INCARD Array - Used as the input buffer.

INI Integer - Used as integer value of a number in number look-up
subroutine.

ISN Integer - Used as return variable for computed go to statement
in number look-up subroutine.

ISR Integer - Used as return variable for computed go to statement
in symbol table subroutine.

ISl Integer - Used as variable in symbol table subroutine.

IS2 Integer - Used as variable in symbol table subroutine.

II Integer - Used as multi-purpose variable.

13 Integer - Used in action routine #3 as a variable.

14 Integer - Used in action routine #4 as a variable.

15 Integer - Used in action routine #5 as a variable.

J Integer - Used as a pointer in STTAB.

JE Integer - Used as return variable for computed go to statement
in action routine #8.

JJ Integer - Used to save value of a pointer for the syntax table.

JJ8 Integer - Used as a multi-purpose variable.

J3 Integer - Used in action routine #3 as a variable.

K Integer - Used as pointer in the input buffer.

KK Integer - Used to save the value of K for temporary processing.

KS Integer - Used to save the value of K for temporary processing.

K3 Integer - Used in action routine #3 as a variable.

L Integer - Used as a pointer in STTAB.

LBS Integer, in SPCHAR - Defines the special character '#'.

LPAR Integer, in SPCHAR - Defines the special character '('.

LT Integer, in SPCHAR - Defines the special character '<'.

L3 Integer - Used in action routine #3 as a variable.

3-7

M Integer - Used as a pointerin STTAB.

MINUS Integer, in SPCHAR - Defines the special character '-'

N Integer - Used as a pointer in STTAB.

NOT Integer, in SPCHAR - Defines the special character ','.

OR Integer, in SPCHAR - Defines the special character 'I'

OUTSVE Integer - Used to save the contents of OUTTAB (STMIN) for
temporary processing.

OUTTAB Array - Used to build the new syntax table.

PERIOD Integer, in SPCHAR - Defines the special character '.'

PLUS Integer, in SPCHAR - Defines the special character '+'

PUT Integer - Contains the number to be assigned to the new
syntax table when written into the syntax file.

QUEST Integer, in SPCHAR - Defines the special character '?'

RC Integer - Contains the return code passed from the action
routines to the Parser. Also acts as the return code from
the subroutines which use one.

RCSAVE Integer - Contains the return code which was read off of the
control card. Given to PUTSTX subroutine.

REPCNT Integer - Used to count the number of replications of an
argument.

ROOT Integer - When used with GETSTX, contains the location of the
syntax table ROOT element. When used with PUTSTX, it tells the
subroutine which element of the new table is the ROOT.

RPAR Integer, in SPCHAR - Defines the special character ')'.

SEMI Integer, SPCHAR - Defines the special character ';'

SFFLAG Logical Flag - Used to signal symbol table is full so no more
entries will be allowed.

SLASH Integer, in SPCHAR - Defines the special character '/'.

SPCHAR Array, in CHRTAB - Defines the section of the character table
consisting of the special characters.

SPLAT Integer, in SPCHAR - Defines the special character '*'

3-8

STMAX Integer - Contains the maximum size of the output syntax
table OUTTAB.

STMIN Integer - Contains the current size of the output syntax
table OUTTAB.

STSAVE Array - Contains the value of STMIN when an alternative
equation is entered. STMIN will be restored to this value
if an invalid alternative is detected.

STTAB Array - Contains the syntax table the syntax generation
program uses.

SUBNUM Integer - Contains the integer equivalent of the character
number found in the input buffer by the number look-up
subroutine.

SYFLAG Logical Flag - Used to signal the output syntax table OUTTAB
is full. No more entries will be allowed.

SYMAX Integer - Contains the maximum size of the symbol table.

SYMIN Integer - Contains the current size of the symbol table.

SYMTAB Array - Used as the symbol table. It contains all symbols
used by the program.

TABMAX Maximum size of the combination syntax and text table to be
read into STTAB by GETSTX.

TRACE Integer - Used as a flag to determine if a trace of the
syntax generator program activities is desired.

TXMAX Integer - Contains the maximum size of the output text
table TXTAB.

TXMIN Integer - Contains the current size of the output text
table TXTAB.

TXSAVE Array - Contains the value of TXMIN when an alternative
equation is entered. TXMIN will be restored to this value
if an invalid alternative is detected.

TXTAB Array - Used to build the new text table.

3-9

3.1.7 Syntax Table Definition

The Syntax Table generated by the syntax processor (Figure 3-1) is a
combination of two tables; a Syntax Equation Table (Figure 3-2) and a
Text Table (Figure 3-3).

The Syntax Equation Table (Figure 3-2) is comprised of blocks of half
word integers. Each block contains a header, a variable length list of
sequential or alternative entries, and a uniquely recognizable marker.

The header of each block consists of six half words. The only half word
set when the table is built is the second one (Type of Block). The other
five half words are used when the table is processed.

Each entry following the header is comprised of two half words. The first
half word is the type of entry. The second half word is the corresponding
argument for the type of entry. A description of the different type codes
and their arguments is shown in (Figure 3-4).

The uniquely recognizable marker (-1) is used to terminate the block.

The Text Table (Figure 3-3) is comprised of text constants encountered
during processing. Each entry is variable in length. The first half
word is the length of the text constant. The half words following the
length are the text constant.

When a set of syntax equations has been processed, the subroutine PUTSTX
is called. This subroutine will combine the two tables by placing the
Text Table at the end of the Syntax Equation Table and updating all refer-
ences to text constants in the Syntax Equation Table.

3-10

SYNTAX EQUATION
BLOCK

SYNTAX
EQUATION
TABLE

SYNTAX EQUATION
BLOCK

SYNTAX
TEXT TABLE

CONSTANT

TEXT
TABLE

TEXT
CONSTANT

Figure 3-1. SYNTAX TABLE

3-11

Index

J * Return

J+l 1 - SEQUENCE
2 - ALTERNATE Type

HEADER J+2 * Input String Position

J+3 * Error Checkpoint

J+4 * Replication Counter

J+5 * Current List Index

J+6 TYPE CODE Type of Entry

J+7 ARG Entry Argument

LIST
Pair of halfwords for
each entry

MARKER J+6+2L -1 End of Halfwords for
each entry

L=(Number of
Entries in List)

*Set During
Processing

Figure 3-2. SYNTAX EQUATION TABLE

3-12

L CHARACTER COUNT

CHAR 1

ENTRY TEXT CONSTANT

CHAR L

M CHARACTER COUNT

CHAR 1

ENTRY " TEXT CONSTANT

CHAR M

N CHARACTER COUNT

CHAR 1

ENTRY ETYTEXT CONSTANT

CHAR N

Figure 3-3. TEXT TABLE

3-13

TYPE OF ELEMENT IN
ELEMENT SYNTAX EQUATION TYPE CODE ARGUMENT

REFERENCE <REF> 1 LOCATION IN SYNTAX
< REF>? 2 TABLE WHERE
<REF>+N 3 REFERENCED BLOCK
< REF>*N 4 BEGINS.

TEXT CONSTANT 'TEXT' 5 LOCATION IN SYNTAX
'TEXT'? 6 TABLE WHERE LENGTH
'TEXT'+N 7 OF TEXT CONSTANT IS
'TEXT'*N 8 LOCATED. TEXT CONSTANT

FOLLOWS LENGTH.

ACTION ROUTINE #9999 9 ACTION ROUTINE
NUMBER #9999? 10 NUMBER

#9999+N 11
#9999*N 12

ERROR NUMBER $999 13 ERROR NUMBER

NOTE - N is optional. If N is present, the type code is (TYPE CODE) X
(1024) + N. This procedure places the TYPE CODE in the upper
half of the HALFWORD and N in the lower half.

Normal - TYPE CODE HALFWORD

With N Present- TYPE CODE N HALFWORD

Figure 3-4. ENTRY TYPE CODES AND ARGUMENTS

3-14

3.1.8 Diagnostics

When an error in a syntax equation is encountered during processing, the
syntax table generator outputs a message containing an error number. The
following is a list of these error numbers and a brief description of the
error.

ERROR NUMBER ERROR DESCRIPTION

1 GETSTX routine called and return code received
from routine was not ZERO.

2 Statement being processed exceeds 20 cards in
length. 20 cards have been read and no semi-
colon was found.

3 Syntax table full. An addition to the output
syntax table cannot be made because it would
require altering locations beyond the end of
the table.

4 Illegal name. Program expected '<' symbol but
some other symbol was found while looking for
name of syntax element.

5 Multi-defined symbol. Symbol usea as name to
define syntax elements has been used previously
to define another block of elements.

6 Symbol table full. An addition to the symbol
table canot be made because it would require
altering locations beyond the end of the table.

7 Symbol too long. Symbol being processed has
more than 32 characters (including blanks) be-
tween '<' symbol and '>' symbol.

8 No characters in symbol. Symbol being processed
has no characters between '<' symbol and '>'
symbol.

9 Text table full. An addition to the text table
cannot be made because it would require altering
locations beyond the end of the table.

10 Null text string. Text string being processed has
no characters (text) between beginning symbol (')
and ending symbol (').

3-15

ERROR NUMBER ERROR DESCRIPTION

11 Illegal subroutine number. A number other than
one from 1 through 9999-has been designated as
a subroutine number.

12 Illegal error (diagnostic) number. A number
other than one from 1 through 999 has been
designated as an error (diagnostic) number.

13 PUTSTX routine called and return code received
from routine was not zero.

14 Two roots found. A search through the symbol
table for the root symbol has produced more than
one unreferenced symbol. Therefore, the correct
root symbol cannot be determined.

15 No root found. A search through the symbol table
for the root symbol has produced no unreferenced
symbols, therefore, a root symbol cannot be
determined.

500 Illegal statement. The statement being parsed is
not recognized as a syntax equation.

3-1b

3.2 COMPILER

3.2.1 Mainline Programs

The Mainline Programs contained within the compiler are identified and
described in the following pages.

3-17

GOAL COMPILER ROUTINE

NAME - ACTERR

FUNCTION- This routine is called if an invalid ACTION
ROUTINE number is encountered during parsing.
A message is given and the run terminated.

CALLED- BY - ANY ACTION ROUTINE

SUBROUTINES CALLED - SYSERR, (FORTRAN I/O)

DESCRIPTION - The error message indicates the ACTION ROUTINE
overlay number and action number. RETURN is made
through SYSERR to terminate the run.

3-18

GOAL COMPILER ROUTINE

NAME - ACTION

FUNCTION - This routine performs 'resident' action functions
and invokes overlay action routines to support
parsing of specific statement types.

CALLED BY - PARSER

SUBROUTINES CALLED - ACTERR, NEXTCR, ERROR, LOOKUP, TXTOUT, INPUT,
SYSERR, and SUB01 ... SUB52

DESCRIPTION - The action routine codes are validated and control
is given to the appropriate routine. Except for
SYSERR and ACTERR, return is always made to the
calling program, (PARSER).

The functions of the 'resident' action routines are
described separately, even though the codes are
physically located in the routine, ACTION.

3-19

GOAL COMPILER ROUTINE

NAME - BLDXRF

FUNCTION - This routine is called once, after all GOAL
statements have been parsed, to prepare for
generation of the cross-reference listings.

CALLED BY - LBLXRF, SYMXRF, or FDXREF

SUBROUTINES CALLED- SYSERR, (FORTRAN I/0)

DESCRIPTION - This routine uses the combined areas of the STXTAB
and STMTAB to build XRFTAB which contains a tabula-
tion of all references to symbolic names entered in
SYMTAB. This is done by scanning the XREF file and
logging all statement numbers which reference each
symbolic name. If the size of XRFTAB is exceeded
SYSERR is called.

3-20

GOAL COMPILER ROUTINE

NAME - DIAGSM

FUNCTION - This routine is called to generate the GOAL
diagnostic summary listing.

CALLED BY - MAIN

SUBROUTINES CALLED - RCRETN, (FORTRAN I/O)

DESCRIPTION - The error file and symbol table are scanned
to generate the diagnostic summary report.
If any errors were -detected during the
compilation, the full diagnostic summary
is generated. If no errors were detected,
a small summary message is printed. If any
errors had occurred return is made via RCRETN
to cancel subsequent translation job steps.

3-21

GOAL COMPILER ROUTINE

NAME - ERROR

FUNCTION - This routine is called to log errors detected
during compilation in the error file.

CALLED BY - PARSER, any action routine that can detect a
recoverable error.

SUBROUTINES CALLED - (FORTRAN I/0)

DESCRIPTION - When this routine is called the error count is
incremented by one and a record is written in
the error file. This record contains:

1. ERROR type
2. Position in statement
3. Statement number
4. Source record number

Return is made to the calling program.

3-22

GOAL COMPILER ROUTINE

NAME - FDLKUP

FUNCTION - This routine verifies function designators used
in the GOAL program. It also verifies that a
macro exists in the Data Bank(s) being used.

CALLEDBY- Most 'ACTION' routines that process function
designators and SUB21 (Macro Processing Routine)

SUBROUTINES CALLED - LOOKUP, YEFIND

DESCRIPTION - When this routine is called the following parameters
are provided:

1. Function designator name or Macro Label
2. Return parms for type, aadress, O.K. flag

If the GOAL compiler is in the 'subroutine' mode,
a search is made to check if the function designator
is a parameter. If not, YEFIND is called to search
each data bank currently in use. In all cases, the
function designator type and address are returned to
the calling program. If not found the type is set to
zero. LOOKUP is called to log all function designator
references in the symbol table. If this routine is
used to verify a macro label, then none of the above
actions is taken. The macro label is verified and
the proper return code is set.

3-23

GOAL COMPILER ROUTINE

NAME - FDXREF

FUNCTION - This routine is called to generate the GOAL
function designator cross-reference listing.

CALLED BY - MAIN

SUBROUTINES CALLED - BLDXRF, (FORTRAN I/0)

DESCRIPTION - BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned to generate the GOAL
function designator cross-reference listing.
Undefined function designator names are flagged.
A summary of data banks used during the GOAL
compilation is provided. Return is made to the
calling program.

3-24

GOAL COMPILER ROUTINE

NAME - FIXUP

FUNCTION - This routine is called when the parser encounters
an invalid GOAL statement. Pointers, etc., are
updated to continue compilation.

CALLED BY - MAIN

SUBROUTINES CALLED - NEXTCR

DESCRIPTION - When this routine is entered the statement buffer
pointer K, is positioned to some unpredictable
character in the current GOAL statement. NEXTCR
is then called, as many times as required, to
position the pointer past the terminal ';'. The
symbol table is then purged of any erroneous defini-
tions entered in parsing the statement. Return is
always made to the calling program.

3-25

GOAL COMPILER ROUTINE

NAME - GINIT

FUNCTION - This routine initializes common data values
and loads the character table, CHRTAB, and
the Syntax table, STXTAB

CALLED BY - MAIN

SUBROUTINES CALLED - *GETCHR, *GETSTX, SYSERR, (FORTRAN I/O).

(*) - These are part of GINIT

DESCRIPTION - A control card is read which identifies the syntax
table to be loaded. This card may also contain up
to 5 patches to the table. Max limits and initial
values are then set for COMMON DATA. GETCHR is
called to load CHRTAB. GETSTX is called to load
STXTAB. If the requested table cannot be loaded,
SYSERR is called to terminate the run. Data Bank
directories MBLOCK and DBLOCK are then loaded. Any
specified patches to STXTAB are made. GINIT then
returns to the calling program.

3-26

GOAL COMPILER ROUTINE

NAME - EXLIST

FUNCTION - This routine is called to write a record in the
GOAL compiler expanded source record listing.

CALLED BY - MAIN

SUBROUTINES CALLED - SYSERR, (FORTRAN I/O)

DESCRIPTION - This routine is called from MAIN for each GOAL
statement processed by the compiler. If the
expanded listing option is not selected no output
is produced. MACRO generated statements are not
listed unless the 'expand' option is specified.
Page and line counts are maintained. Statement
data is contained in the STMTAB portion of the
common DATA area. This data is formatted to
generate the expanded source listing. Error '*'s
are inserted as required. This routine is also
used to write MACRO 'body' statements into the
MACRO FILE, subroutine records in the subroutine
file, and card images in the source deck output
file. If any of the file maximums are exceeded,
SYSERR is called.

3-27

GOAL COMPILER ROUTINE

NAME - INPUT

FUNCTION- This routine provides additional data to the
input buffer, STMTAB, each time it is called.
This data may come from either the input
stream or MACRO file, Data Bank or Subroutine
file.

CALLED BY - MAIN, NEXTCR, RESET, or any action routine
which processes the input stream directly.

SUBROUTINES CALLED - SYSERR, SRLIST, LOOKUP, (FORTRAN I/O).

DESCRIPTION - In normal operation an input record (card) is
read each time this routine is called. In the
MACRO mode this record is obtained from the
MACRO file or Data Bank. In the subroutine
mode this record is obtained from the sub-
routine file. If no data is available ERROR
is called and the run is terminated. SRLIST
is called to list all records read from the
input stream in the normal mode. These records
are then scanned and any abbreviations are
expanded. STMTAB pointers are updated as
required. STMTAB is rolled in and out when
switching modes to avoid loss of data. Normal
returns are made to the calling program.

3-28

GOAL COMPILER ROUTINE

NAME - LBLXRF

FUNCTION - This routine is called to generate the GOAL
statement Label cross-reference listing.

CALLED BY - MAIN

SUBROUTINES CALLED - BLDXRF, (FORTRAN I/0)

DESCRIPTION - BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned and GOAL statement Label
cross-reference listing is generated. Undefined
and unreferenced labels are flagged. Return is
made to the calling program.

3-29

GOAL COMPILER ROUTINE

NAME - LOOKUP

FUNCTION - This routine will define and/or verify
symbolic names in the symbol table, SYMTAB.

CALLED BY - Most GOAL compiler routines.

SUBROUTINES CALLED - SYSERR

DESCRIPTION - Each time this routine is used the calling program
provides the following parameters:

I. Symbolic name
2. Type
3. Option
4. Flag

'Option' indicates define or verify
'type' indicates label, symbol, etc. (Chain No.)
'flag' is set to 0 = OK, -1 = Not found or duplicate

The symbolic names are stored in a variable length
format. The entries are chained according to type
and entries on each chain are in collating sequence.
SYSERR is called if SYMTAB maximum is exceeded.

3-30

GOAL COMPILER ROUTINE

NAME - MAIN

FUNCTION- Initial entry point of GOAL Compiler. Provides
mainline sequencing of principal compiler functions.
Controls re-initialization and compilation of
embedded subroutines.

CALLED BY- Operating System for each GOAL compilation.

SUBROUTINES CALLED - SVSAVE, GINIT, INPUT, PREP, PARSER, FIXUP, EXLIST,
RESET, SYMXRF, LBLXRF, FDXREE, DIAGSM, (FORTRAN I/O).

DESCRIPTION - Common data areas and direct access I/O files are
defined. Data initialization is performed and the
INPUT Buffer is primed. Stmt No. 10 is the start
of the loop used to process each GOAL statement.
If the statement is a comment it is listed on a
separate line. The PARSER is called to process
each GOAL statement at Stmt No. 40. If RC is set
Non-Zero by Parser, FIXUP is called to find ';'.
EXLIST is then called to list statement. If ENDFLG
is set, the loop is finished and summary listings
are generated at Stmt No. 60. The symbol table is
written out to the symbol table file for use by
the Translator. If ENDFLG is not set, RESET is
called to update pointers in the INPUT Buffer
and the loop is continued at Stmt No. 10. DIAGSM
is always called before exit from MAIN.

MAIN also controls looping for embedded subroutine
processing. If any subroutines were embedded in
a GOAL program, the compiler is executed again to
compile these separately.

3-31

GOAL COMPILER ROUTINE

NAME - NEXTCR

FUNCTION - This routine scans the input buffer to find
the next significant character. Blanks and
comments are ignored.

CALLED BY- Most of the 'ACTION' routines that process
GOAL statements or elements.

SUBROUTINES CALLED - INPUT

DESCRIPTION - Each time this routine is called the input buffer
is scanned for a significant character. The
pointer, K, is advanced accordingly. Blanks and
comments are ignored. If K is advanced past the
currently loaded portion of STMTAB, INPUT is called
to obtain additional data.

3-32

GOAL COMPILER ROUTINE

NAME - PARSER

FUNCTION - This routine controls the parsing of GOAL
statements according to the SYNTAX table,
STXTAB.

CALLED BY - MAIN

SUBROUTINES CALLED - INPUT, ACTION, NEXTCR, ERROR

DESCRIPTION - When this routine is entered, K points to the
expected beginning of each GOAL statement. The
statement is then analyzed according to the syntax
rules contained in STXTAB. INPUT is called to
provide additional data when the SCAN exceeds the
currently loaded portion of STMTAB. ACTION is
called as required according to STXTAB. If the
parse fails, ERROR is called to log the diagnostic
message. NEXTCR is called prior to this to position
the error pointer. RC is set to: 0 = Good Stmt,
-1 = error. Return is then made to the calling
program.

3-33

GOAL COMPILER ROUTINE

NAME - PREP

FUNCTION - This routine initializes the input buffer
before parsing each statement.

CALLED BY - MAIN

SUBROUTINES CALLED - NEXTCR, SYSERR

DESCRIPTION - The input buffer pointer, K, is set to 1.
NEXTCR is then called to find the first
significant position in the statement. This
index is saved as STMTK. If a comment precedes
this position in the record a new block is
created for it so that it will be printed on a
separate line in the expanded listing. If the
block count maximum is thus exceeded, SYSERR is
called to terminate the run. Otherwise return
is made to the calling program.

3-34

GOAL COMPILER ROUTINE

NAME - RCRETN

FUNCTION - This routine is called to return control to the
operating system.

CALLED BY - DIAGSM, SYSERR

SUBROUTINES CALLED - (None)

DESCRIPTION - This routine returns control to the operating
system along with a condition code which is
obtained as a parameter from the routine calling
RCRETN. This parameter is used to cancel the
execution of subsequent GOAL TRANSLATOR job steps.

3-35

GOAL COMPILER ROUTINE

NAME - RESET

FUNCTION - This routine is called after each GOAL statement
has been listed to delete it from the input
statement buffer

CALLED BY - MAIN

SUBROUTINES CALLED - INPUT

DESCRIPTION - The contents of the statement buffer following the
terminal ';' of the current statement are examined.
If these are blank the pointers are set to initial
positions and INPUT is called to prime the buffer.
Otherwise, the remaining contents are moved up in
the statement buffer and the buffer pointers are
adjusted for this data. Return is always made to
the calling program.

3-36

GOAL COMPILER ROUTINE

NAME - SRLIST

FUNCTION - This routine is called to write a record in the
GOAL source listing file.

CALLED BY - INPUT

SUBROUTINES CALLED - (FORTRAN I/0)

DESCRIPTION - This routine is called by INPUT each time a record
is read from the compiler input stream. The
contents of this record are stored in the common
data area. This routine formats this data to generate
the GOAL compiler source record listing. Page and
line counts are maintained. The source record data
is not changed in any way. The SRFLG control word is
tested before each output record is written. If this
compiler option is not selected no action is taken.
Return is always made to the calling program.

3-37

GOAL COMPILER ROUTINE

NAME - SYMXRF

FUNCTION - This routine is called to generate the GOAL
Internal name cross-reference listing

CALLED BY - MAIN

SUBROUTINES CALLED- BLDXRF, (FORTRAN I/0)

DESCRIPTION - BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned to generate the GOAL
internal name cross-reference listing. Undefined
and unreferenced names are flagged. Return is
made to the calling program.

3-38

GOAL COMPILER ROUTINE

NAME - SYSERR

FUNCTION - This routine is called to terminate the
compilation in the event of a 'system' type
error condition.

CALLED BY - Any GOAL routine

SUBROUTINES CALLED - RCRETN, (FORTRAN I/0)

DESCRIPTION - An error message is given to indicate the error
type which is passed as a parameter from the
routine calling SYSERR. Return is made via
RCRETN to cancel subsequent TRANSLATOR job steps.

3-39

GOAL COMPILER ROUTINE

NAME - TXTOUT

FUNCTION - This routine is used to write a record in the
GOAL compiler Intermediate Text output file.

CALLEDBY - All action routines that generate intermediate
text.

SUBROUTINES CALLED - SYSERR

DESCRIPTION - The Intermediate Text buffer is contained in a common
data area. A word count is also provided. When this
routine is called a variable length record is written
in the output file. If the word count is not
O<counts406 SYSERR is called to terminate the run.

Each record contains a standard 6 word header. This
header contains a record count which is incremented
each time a record is written.

3-40

3.2.2 SUBXX Action Routines

Table 3-2 is a listing of the Action Routines used-in the compiler. Defin-
itive information relating to these routines is provided by the ensuing
pages.

Table 3-2

Subroutine Listing

SUBOI ACTIVATE TABLE
SUB02 APPLY ANALOG
SUB03 ASSIGN
SUBO4 DECLARE TEXT TABLE
SUB05 BEGIN MACRO
SUB06 BEGIN PROGRAM
SUBO7 BEGIN SUBROUTINE
SUBO8 CONCURRENT
SUBO9 DECLARE DATA
SUBIO DECLARE NUMERIC LIST
SUB11 DECLARE NUMERIC TABLE
SUB12 DECLARE QUANTITY LIST
SUB13 DECLARE QUANTITY TABLE
SUB14 DECLARE STATE LIST
SUB15 DECLARE STATE TABLE
SUB16 DECLARE TEXT LIST
SUB17 EXTERNAL DESIGNATOR
SUB18 DELAY
SUB19 DISABLE INTERRUPT
SUB20 END
SUB21 EXPAND/EXECUTE MACRO
SUB22 FREE DATA BANK
SUB23 GO To
SUB24 INHIBIT TABLE
SUB25 ISSUE DIGITAL PATTERN
SUB26 LEAVE
SUB27 LET EQUAL
SUB28 NOT USED
SUB29 PERFORM PROGRAM/SUBROUTINE
SUB30 READ
SUB31 AVERAGE
SUB31 RECORD DATA
SUB33 RELEASE CONCURRENT
SUB34 REPEAT
SUB35 REPLACE

3-41

Table 3-2

(Continued)

SUB36 REQUEST KEYBOARD
SUB37 RESUME
SUB38 SET DISCRETE
SUB39 NOT USED
SUB40 STOP
SUB41 TERMINATE
SUB42 USE DATA BANK
SUB43 <FD> CHAIN GENERATOR
SUB44 COMPILER DIRECTIVES
SUB45 WHEN INTERRUPT
SUB46 NOT USED
SUB47 NOT USED
SUB48 PREFIX PROCESSOR
SUB49 INTERNAL NAME
SUB50 NOT USED
SUB51 SHORT FORM PROCESSOR
SUB52 DATA BANK PROCESSOR

3-42

GOAL COMPILER ROUTINE

NAME - SUBOI

FUNCTION - This routine supports compilation of the

'ACTIVATE TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, LOOKUP, TXTOUT, FDLKUP

DESCRIPTION - Options 1...7 supported.

#101 - No Action

#102 - Verify, save table name

#103 - No Action

#104 - Write type 30 TXT record

#105 - Verify, index name, write type 31

TXT record

#106 - Verify row No., write type 31 TXT

record

#107 - Verify F. D.,write type 31 TXT

3-43

GOAL COMPILER ROUTINE

NAME - SUBO2

FUNCTION - This routine supports compilation of the

'APPLY ANALOG' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...8 supported.

#201 - Set INNMCT = 0

#202 - Save Ist External Designator

(Present Value)

#203 - Save 2nd External Designator

(Present Value)

#204 - Write type 4 TXT record

#205 - Verify, save internal name

#206 - Verify, save External Designator

#207 - Write type 42, 43 TXT record

#208 - Write type 43 TXT record

3-44

GOAL COMPILER ROUTINE

NAME -
SUBO3

FUNCTION - This routine supports compilation of the

'ASSIGN' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...5 supported.

#301 - No Action

#302 - Verify, save internal name (Ist)

#303 - Write type 38 TXT record

#304 - Verify, save internal name (2nd)

#305 - Save 'STATE'

3-45

GOAL COMPILER ROUTINE

NAME - SUBO4

FUNCTION - This routine supports compilation of the

'DECLARE TEXT TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT, LOOKUP, FDLKUP, (FORTRAN I/0)

DESCRIPTION- Options 1...11 Supported.

#401 - Initialize flags, counters, and pointers

#402 - Write type 62, 63 TXT records

#403 - Verify/Save Table Name

#404 - Verify/Save number of rows integer

#405 - Verify/Save number of columns integer

#406 - Verify/Save column names

#407 - Verify/Save row Function Designators

#408 - Verify entries per row does not exceed

the number of columns

#409 - Verify/Save text constants

#410 - Save maximum number of characters integer

#411 - Verify entries per row is not less than

the number of columns

3-46

GOAL COMPILER ROUTINE

NAME - SUB05

FUNCTION - This routine supports compilation of the

'BEGIN MACRO' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, NEXTCR, LOOKUP, FORTRAN I/O, INPUT,

ERROR

DESCRIPTION - Options 1...3 supported.

#501 - Set MACFLG =2, verify, save macro

name, parameters

#502 - Process macro definition

#503 - SetMACFLG = 0, return to normal

parsing procedure

3-47

GOAL COMPILER ROUTINE

NAME - SUBO6

FUNCTION - This routine supports compilation of the

'BEGIN PROGRAM' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...4 supported

#601 - Reset compiler pointers

#602 - Save program name

#603 - Save program revision label

#604 - Write type 28 TXT record, then

type 6 for ON, OFF constants and

type 18 for DISPLAY, PRINT, RECORD

Function Designators

3-48

GOAL COMPILER ROUTINE

NAME - SUBO7

FUNCTION - This routine supports compilation of the

'BEGIN SUBROUTINE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT, NEXTCR

DESCRIPTION - Options 1...14 supported

#701 - Reset compiler pointers

#702 - Save subroutine name

#703 - Verify, save 'NAME' parameter

#704 - Write type 61 TXT record then type 6

for ON, OFF constants then type 18 for

PRINT, DISPLAY, RECORD Function Designators.

#705 - Count, save parameters

#706 - Verify, save F.D. parameter

#707 - Verify, save F.D.

#708... #711 - Save STYPE

#712 - Find';'

#713 - Check for No procedural statements

#714 - Set STYPE = 5

3-49

GOAL COMPILER ROUTINE

NAME - SUB08

FUNCTION - This routine supports compilation of the

'CONCURRENT' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Option 1 supported

#801 - Write type 36 TXT records

3-b0

GOAL COMPILER ROUTINE

NAME - SUBO9

FUNCTION - This routine supports compilation of the

'DECLARE DATA' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, TXTOUT, LOOKUP

DESCRIPTION - Options 1...20 supported.

#901 - TD = 0

#902, #903 - No Action

#904 - Verify, save NAME (DECLARE NUMBER)

#905 - Write type 2 TXT record (DECLARE NUMBER)

#906 - Set flag for initial values list

#907 - No Action

#908 - Verify, save NAME (DECLARE QUALITY)

#909 - Write type 3 TXT record (DECLARE QUANTITY)

#910 - Set flag for initial values list

#911 - No Action

#912 - Verify, save NAME (DECLARE STATE)

3-51

GOAL COMPILER ROUTINE

NAME - SUBO9 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #913 - Write type 6 TXT record (DECLARE STATE)

#914 - Set flag for initial values list

#915 - No Action

#916 - Verify, save NAME (DECLARE TEXT)

#917 - Write type 7 or 8 TXT record (DECLARE TEXT)

#918 - Move Number, set length

#919 - Check for subroutine parameter

#920 - Set flag for initial values list

3-52

GOAL COMPILER ROUTINE

NAME - SUB10

FUNCTION - This routine supports compilation of the

'DECLARE NUMERIC LIST' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT

DESCRIPTION - Options 1...8 supported.

#1001 - Initialize counters

#1002 - Verify, save list name

#1003 - Verify No. of entries

#1004 - Write type 9 TXT record

#1005 - Verify, save initialization list

#1006 - Verify, save initialization list

#1007 - No Action

#1008 - Count initialization entries, commas

3-53

GOAL COMPILER ROUTINE

NAME - SUB11

FUNCTION - This routine supports compilation of the

'DECLARE NUMERIC TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, LOOKUP, FDLKUP, TXTOUT

DESCRIPTION - Options I...10 supported.

#1101 - Initialize counters

#1102 - Verify, save table name

#1103 - Verify, save No. columns

#1104 - Verify, save No. rows

#1105 - INVALID (ACTERR)

#1106 - Verify F.D., write type 19 TXT record

#1107 - Write type 17, 18, or 19 TXT records

#1108 - Process column titles

#1109 - Check comma count

#1110 - Save initialization value

3-b4

GOAL COMPILER ROUTINE

NAME - SUB12

FUNCTION - This routine supports compilation of the

'DECLARE QUANTITY LIST' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT

DESCRIPTION - Options 1...7 supported.

#1201 - Initialize flags/pointers

#1202 - Verify, save LIST name

#1203 - Check, save No. of entries

#1204 - Write type 11, 12 TXT record

#1205 - Save initialization data

#1206 - Count entries

#1207 - Initialize list entry

3-55

GOAL COMPILER ROUTINE

NAME - SUB13

FUNCTION - This routine supports compilation of the

'DECLARE QUANTITY TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, FDLKUP, TXTOUT

DESCRIPTION - Options 1...10 supported.

#1301 - Initialize flags and counters

#1302 - Verify, save table name

#1303 - Verify, save No. columns

#1304 - Verify, save No. rows

#1305 - INVALID (ACTERR)

#1306 - Verify row function designator

#1307 - Write type 17 TXT record

#1308 - Verify, save column titles

#1309 - Verify, save initialization values

#1310 - Verify No. of entries

3-56

GOAL COMPILER ROUTINE

NAME - SUB14

FUNCTION - This routine supports compilation of the

'DECLARE STATE LIST' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT

DESCRIPTION- Options 1...8 supported.

#1401 - Initialize flags, counters

#1402 - Verify, save list NAME

#1403 - Verify, save No. of entries

#1404 - No Action

#1405 - Save initialization values

#1406 - Write type 13, 14 record

#1407 - Count entries in list

#1408 - Verify list length

3-57

GOAL COMPILER ROUTINE

NAME - SUB15

FUNCTION - This routine supports compilation of the

'DECLARE STATE TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, FDLKUP, TXTOUT

DESCRIPTION - Options 1...10 supported.

#1501 - Initialize flags, counters

#1502 - Verify, save table name

#1503 - Verify, save No. columns in table

#1504 - Verify, save No. rows in table

#1505 - INVALID (ACTERR)

#1506 - Verify, save Row Function Designator

#1507 - Write type 22, 23, 18 TXT records

#1508 - Verify, save column NAMES

#1509 - Save initialization states

#1510 - Verify No. entries in table

3-58

GOAL COMPILER ROUTINE

NAME - SUB16

FUNCTION - This routine supports compilation of the

'DECLARE TEXT LIST' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT, (FORTRAN I/0)

DESCRIPTION - Options I...8 supported.

#1601 - Initialize flags and counters

#1602 - Verify/save List name

#1603 - Verify/save No. entries in list

#1604 - Write type 15, 16 TXT records

#1605 - Save initialization data

#1606 - Verify size of Initialization data

#1607 - Count entries in list

#1608 - Verify No. entries in list

3-b9

GOAL COMPILER ROUTINE

NAME - SUB17

FUNCTION - This routine supports compilation of

'EXTERNAL DESIGNATOR'.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, FDLKUP, TXTOUT, LOOKUP

DESCRIPTION - Options 1...5 supported.

#1701 - Initialize flags and counters

#1702 - Verify, save Ist function designator

#1703 - Verify, save remaining function designators

#1704 - Write type 18 TXT record

#1705 - Verify 'TABLENAME FUNCTIONS', save

3-bO

GOAL COMPILER ROUTINE

NAME - SUB18

FUNCTION - This routine supports compilation of the

'DELAY' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...6 supported.

#1801 - Initialize flags and counters

#1802 - Write type 53 TXT record

#1803 - Save 'TIME' value

#1804 - Provide for 'COMPARISON TEST'

#1805 - No Action

#1806 - Initialize flags for comparison test

3-61

GOAL COMPILER ROUTINE

NAME - SUB19

FUNCTION - This routine supports compilation of the

'DISABLE INTERRUPT' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT

DESCRIPTION - Options l... 4 supported.

#1901 - Initialize flags

#1902 - No Action

#1903 - Save disable step number

#1904 - Write type 64 TXT records

3-62

GOAL COMPILER ROUTINE

NAME - SUB20

FUNCTION - This routine supports compilation of the

'END' statement. (Program and subroutine

only.)

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT, (FORTRAN I/O)

DESCRIPTION - Options 1...6 supported.

#2001 - No Action

#2002 - No Action

#2003 - No Action

#2004 - Write type 29 TXT record

- Close file #17

- Set end flag

#2005 - Same as #2004 for subroutines

#2006 - No Action

3-63

GOAL COMPILER ROUTINE

NAME - SUB21

FUNCTION - This routine supports compilation of the

'EXPAND MACRO' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR. NEXTCR, LOOKUP, INPUT, SYSERR,

(FORTRAN I/0), RESET, ERROR

DESCRIPTION - Options I...4 supported.

#2101 - Process 'BEGIN MACRO' statement

#2102 - Set 'EXPAND ONLY FLAG'

#2103 - Set 'EXECUTE ONLY FLAG'

#2104 - Perform MACRO parameter substitutions

3-64

(I

GOAL COMPILER ROUTINE

NAME - SUB22

FUNCTION - This routine supports compilation of the

'FREE DATA BANK' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP

DESCRIPTION - Options 1...4 supported.

#2201 - Initialize flags and counters

#2202 - Save 'DATA BANK NAME'

#2203 - Verify 'DATA BANK NAME' and Revision

Label, delete from use list

#2204 - Save Revision Label

3-65

GOAL COMPILER ROUTINE

NAME - SUB23

FUNCTION - This routine supports compilation of the

'GO TO' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, LOOKUP, TXTOUT

DESCRIPTION - Options 2...3 supported.

#2301 - Set 'GO TO FLAG' for testing

that next STMT is labeled.

#2302 - Verify stmt label, save in TXT

#2303 - Write type 27 TXT record

3-66

GOAL COMPILER ROUTINE

NAME - SUB24

FUNCTION - This routine supports compilation of the

'INHIBIT TABLE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT, FDLKUP

DESCRIPTION - Options 1...7 supported.

#2401 - No Action

#2402 - Verify/save table NAME

#2403 - No Action

#2404 - Write type 32 TXT record

#2405 - Verify index, write type 33 TXT record

#2406 - Verify ROW No., write type 33 TXT record

#2407 - Verify ROW F.D., write type 33 TXT record

3-67

GOAL COMPILER ROUTINE

NAME - SUB25

FUNCTION - This routine supports compilation of the

'ISSUE DIGITAL PATTERN' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...8 supported.

#2501 - Initialize flags/counters

#2502 - Save 1st External/designator (present value)

#2503 - Save 2nd External/designator (present value)

#2504 - Number pattern constant - write

type 2 TXT record

#2505 - Internal name - save

#2506 - External Designator for NON 'PRESENT

VALUE' types

#2507 - Write TXT record

#2508 - Save External Designator

3-6

GOAL COMPILER ROUTINE

NAME - SUB26

FUNCTION - This routine supports compilation of the

'LEAVE' statement.

CALLED BY- ACTION

SUBROUTINES CALLED- ACTERR, TXTOUT, INPUT, NEXTCR, RESET

DESCRIPTION- Options 1...10 supported.

#2601 - Initialize flags, check for subroutine

compilation

#2602 - Write type 4 TXT record (Quantity value)

#2603 - Write type 2 TXT record (Number value)

#2604 - Write type 2 TXT record (Number Pattern)

#2605 - Save Self Defining State Parameter

#2606 - Write type 8 TXT record (Text Constant)

#2607 - Save internal name parameter

#2608 - Write Type 66 TXT record (with Parameters)

#2609 - Write Type 66 TXT record (without Parameters)

#2610 - Purge all data in the input stream until

the word RESUME is encountered.

3-b9

GOAL COMPILER ROUTINE

NAME - SUB27

FUNCTION - This routine supports compilation of the

'LET EQUAL' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION- Options l...15 supported.

#2701 - Initialize flags/counters

#2702 - Verify, save internal name (on left of '=')

#2703 - Check parenthesis count, write type 60

TXT record

#2704 - Save '+'

#2705 - Save '-'

#2706 - Verify, save internal name in expression

#2707 - Save operator type

#2708 - Write type 4 TXT for self-defining quantity

#2709 - Write type 2 TXT for self-defining number

3-70

GOAL COMPILER ROUTINE

NAME - SUB27 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #2710 - Count, save '('

#2711 - Count, save ')'

#2712 - Operator type = 1

#2713 - Operator type increment by 1

#2714 - Namecount = 0

#2715 - Check Name count - must be 1

3-71

GOAL COMPILER ROUTINE

NAME - SUB29

FUNCTION - This routine supports compilation of the

'PERFORM SUBROUTINE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT, FDLKUP

DESCRIPTION - Options I...16 supported

#2901 - Initialize flags/counters

#2902 - Save 'PROGRAM NAME'

#2903 - Write type 34/35 TXT record

#2904 - No Action

#2905 - No Action

#2906 - Self-defining Number Pattern Parm

#2907 - Self-defining Number Parm

#2908 - Self-defining Quantity Parm

#2909 - Self-defining State Parm

3-72

GOAL COMPILER ROUTINE

NAME - SUB29

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #2910 - Self-defining Text Parm - Write

Type 8 TXT record

#2911 - Function designator Parm - Write

Type 8 TXT record

#2912 - Internal Name Parm

#2913 - Write type 34 TXT record

#2914 - Same as #2902

#2915 - Write type 59 TXT record

#2916 - Save Revision Label

3-73

GOAL COMPILER ROUTINE

NAME - SUB30

FUNCTION - This routine supports compilation of the

'READ' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...3 supported.

#3001 - Verify External designator, save

#3002 - Verify/save internal name

#3003 - Write type 47 TXT record

3-74

GOAL COMPILER ROUTINE

NAME - SUB31

FUNCTION - This routine supports compilation of the

'AVERAGE' statement

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options I...4 supported.

#3101 - Save Nbr readings

#3102 - Verify External designator

#3103 - Verify Internal name

#3104 - Write type 48 TXT record

3-75

GOAL COMPILER ROUTINE

NAME - SUB32

FUNCTION - This routine supports compilation of the

'RECORD DATA' statement

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...18 supported.

#3201 - Initialize flags/counters

#3202 - Write type 40 TXT record

#3203 - INVALID (ACTERR)

#3204 - Save External Designator for 'PRESENT

VALUE' (sensor)

#3205 - Write type 39 TXT record

#3206 - INVALID (ACTERR)

#3207 - INVALID (ACTERR)

#3208 - Verify, save 'SYSTEM' type External Desig-

nator

#3209 - INVALID (ACTERR)

3-76

GOAL COMPILER ROUTINE

NAME - SUB32 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #3210 - INVALID (ACTERR)

#3211 - INVALID (ACTERR)

#3212 - Text constant - write type 8 TXT record

#3213 - 'New Line' entry

#3214 - 'Internal Name' entry

#3215 - INVALID (ACTERR)

#3216 - Verify 'SYSTEM' type External

Designator write type 18 TXT if required

#3217 - 'PRINT' request - set up External

Designator

#3218 - 'RECORD' request - set up External

Designator

3-77

GOAL COMPILER ROUTINE

NAME - SUB33

FUNCTION- This routine supports compilation of the

'RELEASE CONCURRENT' statement.

CALLED BY- ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT, LOOKUP

DESCRIPTION - Options 1...5 supported.

#3301 - Initialize flags/counters

#3302 - Write type 37 TXT record

#3303 - Verify/save STMT NO. reference

#3304 - No Action

#3305 - No Action

3-78

GOAL COMPILER ROUTINE

NAME - SUB34

FUNCTION - This routine supports compilation of the

'REPEAT' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, LOOKUP, TXTOUT

DESCRIPTION - Options 1... 7 supported.

#3401 - Initialize flags/counters

#3402 - Verify/save Ist STMT NO. reference

#3403 - Write type 24 TXT record

#3404 - Verify/save 2nd STMT NO. reference

#3405 - No Action

#3406 - Save repetition count

#3407 - No Action

3-79

GOAL COMPILER ROUTINE

NAME - SUB35

FUNCTION - This routine supports compilation of the

'REPLACE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, NEXTCR, INPUT, LOOKUP, SYSERR

DESCRIPTION - Options 1...7 supported.

#3501 - Save Ist 'NAME'

#3502 - Save 2nd 'NAME'

#3503 - Save Ist 'TEXT'

#3504 - Save 2nd 'TEXT'

#3505 - Save Ist 'Funct designator'.

#3506 - Save 2nd 'Funct designator'.

#3507 - Update substitution table

3-80

GOAL COMPILER ROUTINE

NAME - SUB36

FUNCTION - This routine supports compilation of the

'REQUEST KEYBOARD' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, FDLKUP, TXTOUT

DESCRIPTION - Options 1...8 supported.

#3601 - Initialize flags/counters

#3602 - Verify, save 'SYSTEM' Function Designator

Write type 18 TXT record

#3603 - Verify/save Internal Name (for input)

#3604 - Write type 55 TXT record

#3605 - Save TEXT constant - write type 8

TXT record

#3606 - No Action

#3607 - 'New Line' entry - save

#3608 - Verify/Save 'Internal/Name' - Text

type message

3-b1

GOAL COMPILER ROUTINE

NAME - SUB37

FUNCTION - This routine supports compilation of the

'RESUME' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Option 1 is supported.

#3701 - Write type 67 TXT record

3-82

GOAL COMPILER ROUTINE

NAME - SUB38

FUNCTION - This routine supports compilation of the

'SET DISCRETE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options 1...12 supported.

#3801 - Initialize flags/counters

#3802 - Ist External Designator - save -

'PRESENT VALUE' option

#3803 - 2nd External Designator - save -

'PRESENT VALUE' option

#3804 - Save Ist External Designator -

'SET <FD> option

#3805 - Prep for type 46 TXT record

#3806 - Save 'STATE'

#3807 - Save 'INTERNAL NAME'

#3808 - Save 'TIME'

3-83

GOAL COMPILER ROUTINE

NAME - SUB38 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #3809 - Set flag for 'OPEN/'TURN ON'

#3810 - Set flag for 'CLOSE'/'TURN OFF'

#3811 - Verify List counts

#3812 - Write TXT record

3-84

GOAL COMPILER ROUTINE

NAME - SUB40

FUNCTION - This routine supports compilation of the

'STOP' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT, LOOKUP

DESCRIPTION - Options 1...5 supported.

#4001 - Initialize flags/counters

#4002 - Write type 54 TXT record

#4003 - Note - No restart labels specified

#4004 - Save STMT LABELS

#4005 - Generate array for 'LABELS'

3-85

GOAL COMPILER ROUTINE

NAME - SUB41

FUNCTION - This routine supports compilation of the

'TERMINATE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, TXTOUT

DESCRIPTION - Options I...3 supported.

#4101 - Initialize flags/counters

#4102 - Write type 25 TXT record

#4103 - Set flag for 'TERMINATE SYSTEM'

3-86

GOAL COMPILER ROUTINE

NAME - SUB42

FUNCTION - This routine supports compilation of the

'USE DATA BANK' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, SEEKDB, LOOKUP

DESCRIPTION - Options I...4 supported.

#4201 - Initialize flags/counters

#4202 - Save 'DATA BANK NAME'

#4203 - Verify 'Data Bank' add to use list

#4204 - Save Revision Label

3-87

GOAL COMPILER ROUTINE

NAME - SUB44

FUNCTION - This routine supports compilation of the

'DIRECTIVES' statement.

CALLED BY- ACTION

SUBROUTINES CALLED - ACTERR, NEXTCR, INPUT

DESCRIPTION - Options 1...19 supported.

#4401 - Set EXLIST 'no print' FLAG

#4402 - Verify set 'sequencing field' length

#4403 - Set 'NO TXT' flag

#4404 - Clear all output listing enable flags

#4405 - Enable 'SOURCE LISTING'

#4406 - Enable 'EXPANDED LISTING'

#4407 - Enable 'LABEL XREF LISTING'

#4408 - Enable 'INTERNAL NAME XREF LISTING'

#4409 - Enable 'FUNCTION DESIGNATOR XREF LISTING'

3-88

GOAL COMPILER ROUTINE

NAME - SUB44 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4410 - Enable 'DIAGNOSTIC SUMMARY LISTING'

#4411 - Save 'TITLE'

#4412 - Save 'DATE'

#4413 - Save 'Page Size'

#4414 - Save 'Line Size'

#4415 - Set up for new page

#4416 - Set page count

#4417 - Set convert, reset punch

#4418 - Set line size to 80, set punch flag

#4419 - Reset punch and convert flags

3-89

GOAL COMPILER ROUTINE

NAME - SUB45

FUNCTION - The routine supports compilation of the

'WHEN INTERRUPT' statement.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, TXTOUT, LOOKUP, FDLKUP

DESCRIPTION - Options l...16 supported.

#4501 - Initialize flags

#4502 - Save Subroutine Name

#4503 - Write type 34, 35, and 68 TXT records

#4504 - Save statement nbr, Write type 27 TXT

record

#4505 - No Action

#4506 - Write type 2 TXT record (Number Pattern)

#4507 - Write type 2 TXT record (Number Value)

#4508 - Write type 4 TXT record (Quantity value)

#4509 - Save Self Defining State Parameter

#4510 - Write type 8 TXT record (Internal name)

3-9u

GOAL COMPILER ROUTINE

NAME - SUB45 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4511 - Write type 18 TXT record (Function

Designator)

#4512 - Save Internal Name

#4513 - Set "Critical" Subroutine Flag

#4514 - No Action

#4515 - Write type 65 TXT record

#4516 - Save 'RETURN TO' statement number

3-91

GOAL COMPILER ROUTINE

NAME - SUB48

FUNCTION - This routine supports compilation of the

'PREFIX'

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, FDLKUP, TXTOUT

DESCRIPTION - Options 1... 45 supported.

#4801 - Note 'AFTER' option

#4802 - Note 'WHEN' option

#4803 - Verify Time <F.D.>, write type 18 TXT record

#4804 - Verify 'TIME VALUE'

#4805 - Verify 'INTERNAL NAME'

#4806 - Write type 52 TXT record for 'TIME PREFIX'

#4807 - No Action

#4808 - Initialize flags/counters for 'LIMITS TEST'

#4809 - Save 'INTERNAL NAMES' in 'LIMITS TEST'

#4810 - Save 'NUMBER' in 'LIMITS TEST', write

type 2 TXT record

3-92

GOAL COMPILER ROUTINE

NAME - SUB48 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4811 - Save 'QUANTITY' in 'LIMITS TEST', write

type 4 TXT

#4812 - Note 'NOT BETWEEN' option

#4813 - Verify list counts

#4814 - No Action

#4815 - Note 'IF' option

#4816 - Negate 'GO TO' TEST

#4817 - Write type 56 TXT record

#4818 - Verify compatibility for 'RELATIONAL TEST'

#4819 - Save 'STATE'

#4820 - Determine Relational operator

3-93

GOAL COMPILER ROUTINE

NAME - SUB48 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4821 - Process TEXT constant - write

type 8 TXT record

#4822 - Initialize Relational operator test

#4823 - Write type 57/58 TXT records, process

implied 'VERIFY/STOP' if required

#4824 - Note 'VERIFY THEN'

#4825 - Note 'VERIFY ELSE/AND'

#4826 - Note 'VERIFY ELSE'

#4827 - Note 'IMPLIED STOP'

#4828 - No Action

#4829 - Initialize for 'OUTPUT EXCEPTION'

#4830 - Note 'PRINT OPTION'

3-94

GOAL COMPILER ROUTINE

NAME - SUB48 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4831 - Note 'DISPLAY OPTION'

#4832 - Note 'RECORD OPTION'

#4833 - Process 'TEXT'

#4834 - Process 'INTERNAL NAME' for 'VERIFY'

#4835 - Process 'EXTERNAL DESIGNATOR' for VERIFY

#4836 - Zero time buffer - Initialize

#4837 - Save 'DAYS'

#4838 - Save 'HOURS'

#4839 - Save 'MIN'

#4840 - Save 'SEC'

#4841 - Save 'MS'

#4842 - Update for signed 'TIME VALUE'

3-95

GOAL COMPILER ROUTINE

NAME - SUB48 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #4843 - Save Time Value - Write Type 4

Text Record

#4844 - Save Pointers to Internal Name

#4845 - Save 'WITHIN' Time Value

3-96

GOAL COMPILER ROUTINE

NAME - SUB49

FUNCTION - This routine supports compilation of

'INTERNAL NAME'.

CALLED BY - ACTION

SUBROUTINES CALLED- ACTERR, LOOKUP, FDLKUP

DESCRIPTION- Options 1...10 supported.

#4901 - Verify 'NAME' is defined, save type, etc.

#4902 - Verify 'ROW DESIGNATOR'

#4903 - Verify 'COLUMN NAME'

#4904 - Only 'COLUMN NAME' given

#4905 - Set flag for column subscript

#4906 - Set flag for row subscript

#4907 - Process 'TABLE'

#4908 - Process 'LIST'

#4909 - Process 'LIST' subscript

#4910 - Process 'SCALAR' (single) NAME

3-97

GOAL COMPILER ROUTINE

NAME - SUB51

FUNCTION - This subroutine substitutes GOAL words and

phrases for corresponding short form words

and phrases.

CALLED BY - ACTION

SUBROUTINES CALLED - NEXTCR

DESCRIPTION - This subroutine is entered from the syntax

action numbers #5101, #5102, #5103. This

parser sets SUBTXT to an address in STXTAB

which contains the number of characters in

the substitute field. If CONVRT, which is

set by the Compiler Directives Subroutine,

is equal to one, the substitution is made.

#5101 - Save pointer to the first letter in

a short form word

#5102 - If CONVRT equals one, make the sub-

stitution and apend a blank, the letter

S, or both as appropriate

#5103 - Mark the short form word as singular

or plural

3-98

GOAL COMPILER ROUTINE

NAME - SUB52

FUNCTION - This routine preprocesses free form data bank

input records and outputs fixed form records

for use by the data bank maintenance programs.

CALLED BY - ACTION

SUBROUTINES CALLED - ACTERR, (FORTRAN I/0)

DESCRIPTION - Options I...26 supported

#5201 - Move name to output buffer

#5202 - Write fixed form 'DATABANK' record

#5203 - Write 'END DATABANK' statement

#5204 - Move function designator to output buffer

#5205 - Write fixed form 'SPECIFY' record

#5206 - Move 'LOAD' to output buffer

#5207 - Move 'SENSOR' to output buffer

#5208 - Move 'SYSTEM' to output buffer

#5209 - Move 'DISCRETE' to output buffer

#5210 - Move 'ANALOG to output buffer

3-99

GOAL COMPILER ROUTINE

NAME - SUB52 (Continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #5211 - Move 'CLOCK' to output buffer

#5212 - Move 'PRINTER' to output buffer

#5213 - Move 'CRT' to output buffer

#5214 - Move 'TAPE' to output buffer

#5215 - End of input data.- set ENDFLG=1

#5216 - Support function designator alternate

form - output first record

#5217 - Limit address to 4 digits and move

It to output area

#5218 - Move subroutine name to output area

#5219 - Move revision label to output area

#5220 - Write fixed form 'DELETEDB' record

3-100

GOAL COMPILER ROUTINE

NAME - SUB52 (Continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION - #5221 - Write fixed form 'DELETE' record

#5222 - Move 'INTERRUPT' and value to output area

#5223 - Move 'FLAG' and value to output area

#5224 - Output 'NAME SUBROUTINE' record

#5225 - Set flag to indicate preprocessor mode

#5226 - Limit FORTRAN subroutine name to 6

characters

3-101

3.2.3 Intermediate Text Output Formats

The GOAL compiler generates an intermediate text output record for each
of the syntactical elements of the GOAL language. The records are variable
in length, with each having a standard 7 word header followed by up to 400
words of text data. Each word is a 16 bit integer which is referenced in
IBM System/360 terminology as a halfword (HW). All records are of the
following general format.

HW# 0 - Number of words following (6 through 400)

1 - Internal text record number (sequence 1 through n)

2 - Type Code (1 through 68)

3 - Continuation Code (0 = stand alone text record
(l = additional text data to follow

4 - GOAL statement number

5 - GOAL statement label number

6 - Variable

7- n - Data

A standard format is used for representation of External Designators,
Internal Names, and Comparison Tests. The individual format descriptions
and the descriptions of the intermediate text records are given on the
following pages.

3-102

STANDARD REPRESENTATION OF AN INTERNAL NAME

(Always 5 Half Words)
Type Name Rows Columns

Numeric Scalar 1 Variable Sequence Number 0 0 1
Quantity Scaler 2 Variable Sequence Number 0 0 1
State Scalar 3 Variable Sequence Number 0 0 1
Text Scalar 4 Variable Sequence Number 0 0 Length of text string

Numeric List 5 Variable Sequence Number 0 0 Number of entries
Numeric List Indexed 5 Variable Sequence Number I/-V# 0 1

Quantity List 6 Variable Sequence Number 0 0 Number of entries
Quantity List Indexed 6 Variable Sequence Number I/-V# 0 1

State List 7 Variable Sequence Number 0 0 Number of entries
State List Indexed 7 Variable Sequence Number I/-V# 0 1

Text List 8 Variable Sequence Number 0 Length of Number of entries
Text List Indexed 8 Variable Sequence Number I/-V# text string 1

Numeric Table Column 9 Variable Sequence Number 0 I/-V# Number of rows
Numeric Table Element 9 Variable Sequence Number I/-V# I/-V# 1

Quantity Table Column 10 Variable Sequence Number 0 I/-V# Number of rows
Quantity Table Element 10 Variable Sequence Number I/-V# 1

State Table Column 11 Variable Sequence Number 0 I/-V# Number of rows
State Table Element 11 Variable Sequence Number I/-V# I/-V# 1

Text Table Column 12 Variable Sequence Number 0 I/-V# Number of rows
Text Table Element 12 Variable Sequence Number I/-V# I/-V# 1

I = A positive Integer
-V# = The negative variable sequence number of the variable containing the index number

STANDARD REPRESENTATION OF AN EXTERNAL DESIGNATOR

(Always 4 Half Words)

Type Variabe Variable Sequence Number Number of Rows Code

Type
External

Data Bank Designator Compiler Code

1 Load Discrete 4 0 = Table Name Functions

2 Load Analog 2 1 = Number Inhibit Arrayl

3 Load Clock 2

4 Sensor Discrete 3

5 Sensor Analog 1

6 Sensor Clock 1

7 System Printer 5

8 System Display 5

9 System Tape 5

10 Subroutine 6

11 Interrupt 7

12 System Flag 8

3-104

STANDARD REPRESENTATION OF COMPARISON TEST

(Always 17 Half Words)

Type

1 1st Internal Name 2nd Internal Name 3rd Internal Name OP Count

2 1st External Name 2nd Internal Name 3rd Internal Name OP Count

3 Ist Internal Name 2nd Internal Name OP Count

4 Ist External Designator 2nd Internal Name OP Count

HWI HW2-6 HW7-11 HW12-16 HW17

Type OP Count

1 - Limit Formula Internal Names 1 - GT

2 - Limit Formula External Designator 2 - LT

3 - Relational Formula Internal Names 3 - GE

4 - Relational Formula External Designator 4 - LE

5 - EQ

6 - NE

7 - ON

8 - OFF

INTERMEDIATE TEXT TYPES

Type Name

1 Declare Numeric Data (Uninitialized)

2 Declare Numeric Data (Initialized)

3 Declare Quantity Data (Uninitialized)

4 Declare Quantity Data (Initialized)

5 Declare State Data (Uninitialized)

6 Declare State (Initialized)

7 Declare Text (Uninitialized)

8 Declare Text (Initialized)

9 Declare Numeric List (Uninitialized)

10 Declare Numeric List (Initialized)

11 Declare Quantity List (Uninitialized)

12 Declare Quantity List (Initialized)

13 Declare State List (Uninitialized)

14 Declare State List (Initialized)

15 Declare Text List (Uninitialized/Initialized)

16 Declare Text List (Row Initialization)

17 Declare Numeric Table (Uninitialized/Initialized)

18 Function Designator Array

19 Declare Numeric Table (Row Initialization)

20 Declare Quantity Table (Uninitialized/Initialized)

21 Declare Quantity Table (Row Initialized)

22 Declare State Table (Uninitialized/Initialized)

23 Declare State Table (Row Initialization)

3-106

INTERMEDIATE TEXT TYPES
(Continued)

Type Name

24 Repeat Statement

25 Terminate Statement

26 Statement Label

27 GO TO Statement

28 Begin Program

29 End Program

30 Activate Table (All)

31 Activate Table (Row)

32 Inhibit Table (All)

33 Inhibit Table (Row)

34 Enter/Leave Critical Mode

35 Perform Subroutine

36 Concurrently Perform

37 Release Concurrent Statement

38 Assign Statement

39 Record Present Value of

40 Record Statement

41 Apply Present Value of

42 Apply Analog (list or table column)

43 Apply Analog (scalars)

44 Set Present Value of

45 Set External Designator (list or table column)

46 Set Discrete (scalars)

47 Read Statement

3-107

INTERMEDIATE TEXT TYPES
(Continued)

Type Name

48 Average

49 Issue Digital Pattern (present value of)

50 Issue Digital Pattern (list or table column)

51 Issue Digital Pattern (scalars)

52 Time Prefix

53 Delay Statement

54 Stop Statement

55 Request Keyboard

56 Condition Prefix (If/Then variation)

57 Condition Prefix (Verify)

58 Output Exceptions

59 Perform Program

60 Let Equal

61 Begin Subroutine

62 Declare Text Table (Uninitialized/Initialized)

63 Declare Text Table (Row Initialization)

64 Disable Interrupt

65 When Interrupt

66 Leave Statement

67 Resume Statement

68 Return To

3-108

DECLARE NUMERIC DATA (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 1

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

3-1u9

DECLARE NUMERIC DATA (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 2

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* * * * * * * * * * * * * * * * * **

1 Variable Sequence Number

2 0

3 0

4 0

61 Initialization Value

3-110

DECLARE QUANTITY DATA (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 3

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

3-111

DECLARE QUANTITY DATA (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 4

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 0

3 0

4 Quantity Number 1 thru 63 or - 1

(The -1 denotes an initialized time entry.)

5} Initialized Data

3-112

DECLARE STATE (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 5

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

3-113

DECLARE STATE (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 6

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 IVariable Sequence Number

2 i0

3 0

4 0

5 'State (0 or 1)

3-114

DECLARE TEXT (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 7

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 0

3 0

4 Length of text variable

3-115

DECLARE TEXT (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 8

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 0

3 0

4 Length of text variable

5 ist text character

6 2nd text character

n+4, nth text character (1ns 80)

3-116

DECLARE NUMERIC LIST (Uninitialized)

HW STANDARD HIEADER

1 Intermediate Tex:; Record Number

2 Record Type = 9

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Lilbel

6 Not Used

1 Variable Sequence Number

2 Number of entries in list

3-117

DECLARE NUMERIC LIST (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 10

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of entries in list

3 0

4 0

} 1 Ist Value

7} 2nd Value
8

2n+3 nth value (1n' 99)
2n+4

3-118

DECLARE QUANTITY LIST (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 11

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3-119

DECLARE QUANTITY LIST (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 12

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 0

4 0

5} Ist Quantity Value
6

} 2nd Quantity Value
8

2n+3
2n+3} nth Quantity Value2n+4

2n+5 1 Ist Quantity Dimension
2n+6

2n+7 1 2nd Quantity Dimension
2n+8

4n+3
4n+4 nth Quantity Dimension (1n<99)

3-120

DECLARE STATE LIST (Uninitialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 13

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3-121

DECLARE STATE LIST (Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 14

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 0

4 0

5 Ist State (0 or 1)

6 2nd'State

n+4 nth State (15n599)

3-122

DECLARE TEXT LIST (Uninitialized/Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 15

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* ** * * *** * *** **** *** **** ******* ** ***

1 Variable Sequence Number

2 Number of Rows

3 Maximum length of text data

*A type 15 Intermediate Text record must precede one or more type 16

Intlrmediate Text records.

3-123

DECLARE TEXT LIST (Row Initialization)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 16

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Row Number

3 Length of Text

4 1st Character

5 2nd Character

n+4 [nth Character (1n80)

*A type 15 Intermediate Text record must precede a group of type 16

Intermediate Text records.

3-124

DECLARE NUMERIC TABLE (Uninitialized/Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 17

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 Number of Columns

*A type 17 Intermediate Text record must precede a group of type 19

Intermediate Text records.

3-125

FUNCTION DESIGNATOR ARRAY

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 18

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows (Number of Function Designators)

3 Type
4 Address } 1st Function Designator

5 Type
6 Address } 2nd Function Designator

n+2 Typen+ ddrpe ss nth Function Designator (1 <n45)

3-126

DECLARE NUMERIC TABLE (Row Initialization)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 19

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Row Number

3 Number of Columns

4 0

Ist Entry in Row

} 2nd Entry in Row

n+41 nth Entry in Row (lIn10O)
n+5

*A type 17 Intermediate Text record must precede a group of type 19

Intermediate Text records.

3-127

DECLARE QUANTITY TABLE (Uninitialized/Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 20

3 Continuation Code = 0 or 1

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 Number of Columns

*A ype 20 Intermediate Text record with HW3=1 must precede a group of

type 21 Intermediate Text records.

3-128

DECLARE QUANTITY TABLE (Row Initialization)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 21

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Row Number

3 Number of Columns

4 0

5} Ist Entry in Row
6

7
8 2nd Entry in Row

2n+3j nth Entry in Row
2n+4

2n+5 Ist Dimension

2n+6 2nd Dimension

3n+4 nth Dimension (<n<-10O)

*There will be a type 21 Intermediate Text record for each row of the table.

A type 20 Intermediate Text record with the continuation code Equal 1 must

precede the type 21 Intermediate Text records.

3-129

DECLARE STATE TABLE (Uninitialized/Initialized)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 22

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 Number of Columns

*A type 22 Intermediate Text record will precede a group of type 23

Intermediate Text records.

3-130

DECLARE STATE TABLE (Row Initialization)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 23

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Row Number

3 Number of Columns

4 0

5 Ist State (0 or 1)

6 2nd State

n+4 nth State (lnO10)

*There will be a type 23 Intermediate Text record for each row of the table.

A type 22 Intermediate Text record must precede the type 23 Intermediate Text

records.

3-131

REPEAT STATEMENT

HW STANDARD HEADER

1 Intermediate Th:xt Record Number

2 Record Type = 24

3 Continuation C ,de = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Numer of times to repeat

3 Beginning Step Number

4 Ending Step Number

3-132

TERMINATE STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 25

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 0 or 1

0 = Terminate;

I = Terminate System;

3-133

STATEMENT LABEL

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 26

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

3-134

GO TO STATEMENT

HW STANDARD HEADER'

1 Intermediate Text Record Number

2 Record Type = 27

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 4

2 1st Character

3 2nd Character
GOAL Statement Number to branch to

4 3rd Character

5 4th Character

3-13b

BEGIN PROGRAM

HW STANDARD HEADER,

1 Intermediate Text Record Number

2 Record Type = 28

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Chain 12 Reference Number

Ist Four Characters of Program Name

4

5-

6
Ist Four Characters of Revision Label

7

8

3-136

END PROGRAM

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 29

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

3-137

ACTIVATE TABLE (ALL)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 30

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3-138

ACTIVATE TABLE (ROW)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 31

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 0

3 Row Number or Variable Number of Index

j-139

INHIBIT TABLE (ALL)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 32

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3-140

INHIBIT TABLE (ROW)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 33

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 0 1
or

3 Row Number Variable Number of Index

3-141

ENTER/LEAVE CRITICAL MODE

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 34

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 0 or 1

0 = Enter Critical

1 = Leave Critical

3-142

PERFORM SUBROUTINE

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 35

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Chain 12 Reference Number

2 Ist 4 characters of Subroutine name

4

5 Number of parameters

6
7
8 Ist Parameter
9
10

12
13 2nd Parameter
14
15

n+5
n+6 }
n+7 nth Parameter (On10)
n+8
n+9

The parameters will be standard 5 word internal names or expanded Function

Designator. The Ist word for Expanded Function Designators will be -1.

3-143

CONCURRENTLY PERFORM

HW STANDARD HEADER,

1 Intermediate Text Record Number

2 Record Type = 36

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

21 Internal Time Value Variable
3 (Zero in HW1 implies execute one time only)

3-144

RELEASE CONCURRENT STATEMENT(S)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 37

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Number of statements to be released

(Zero implies release all)

2 Ist statement number to be released

3 2nd statement number to be released

n+l last statement number to be released (ln10O)

3-14b

ASSIGN STATEMENT

HW STANDARD HEADER,

1 Intermediate Text Record Number

2 Record Type = 38

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* Ji; * * * *

1 Internal Name Type (1-11)

2 Variable sequence Number

3 Row 1Ist Internal Name

4 Column

5 Length

6 Internal Name Type (1-11)

7 Variable Sequence Number

8 Row 2nd Internal Name

9 Column

10 Length

3-14b

RECORD PRESENT VALUE STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 39

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1*
2 Object External Designator. (Where the data is to be recorded)3
4

5
6 Input External Designator (What data is to be recorded)
7
8

*Standard External Designator 4 half word format.

3-147

STOP STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 54

3 Continuation Codd = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* *a *

1 Variable Sequence Number (HWI=O if HW2=O)

2 Number of Entries (restart labels, On10O)

3 1st Restart Label

4 2nd Restart Label

n+2 nth Restart Label

3-148

RECORD STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 40

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

** *

2 Object External Designator (Where the data is to be recorded.)

5 Number of internal names (1sn:25)

6 * Zero in the first HW of an Internal Name
7 1st Internal Name indicates a new record or a carriage

return

10

12t
131 2nd Internal Name
14
15i

n+5
n+6
n+7, nth Internal Name
n+8 j

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-149

APPLY PRESENT VALUE

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 41

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

3 External Designator (Load Analog)

5
6 External Designator (S'ensor Analog)78

*Standard External Designator 4 half word format.

3-150

APPLY ANALOG STATEMENT
(List or Table Column)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 42

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

2 3 External Designator (Load Analog)

5
6 Internal Time Value Variable
7 (Zero in HW5 implies one time only)
89J
10
11 Internal Name
12 (Must be numeric or quantity list or table column)
13
14

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-151

APPLY ANALOG (Scalars)

HW STANDARD HEADER ,

1 Intermediate Text Record Number

2 Record Type = 43

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

"* *

2 External Designator (Load Analog)
4

5 Number of internal names (On<15). If n=O, then External Designator must
be a subroutine.

6
8 Ist Internal Name

10

11]
12
13 2nd Internal Name
14

n+5
n+6
n+7 .nth Internal Name
n+8
n+9

*Standard External Designator and Internal Name 4 and 5 half word formats.

Internal Names must be quantity or numeric scalar, list element or table

element.
3-152

SET PRESENT VALUE STATEMENT

HW STANDARD HEADER'

1 Intermediate Text Record Number

2 Record Type = 44

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

I Object External Designator (Load Discrete)

5

6 Input External Designator (Sensor Discrete)

8.

*Standard External Designator 4 half word formats.

3-153

SET EXTERNAL DESIGNATOR STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 45

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

2 Object External Designator

4

5 Time Value (0 if none specified)

7

9 Internal Name (must be a state list or table column)
10
11

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-154

SET DISCRETE (Scalars)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 46

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

2
3 Object External Designator

5
6 Internal Time Value Variable
7 (HW5 is Zero if time not specified)
8
9J
10 Number of Internal Names (O0n<15) If n=O, then External Designator

must be a subroutine type.

11
12
13 Ist Internal Name
14
15

16
17
18 2nd Internal Name
19
20

n+il
n+12
n+13 nth Internal Name
n+14
n+15
*Standard External Designator and Internal Name 4 and 5 half word formats.

3-155

READ STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 47

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* ir * *

i External Designator

4

7 Internal Name8

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-156

AVERAGE STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 48

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* *** *

1
2 External Designator

4

5 1 Number of readings to average

6
7
8 Internal Name

10

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-Ib7

ISSUE DIGITAL PATTERN STATEMENT.

(Present Value of)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 49

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

S* *** **

11
2 External Designator (Load)
3
4j

5'
6 External Designator (Sensor)
7
8

*St4ndard External Designator 4 half word format.

3-1 58

ISSUE DIGITAL PATTERN STATEMENT

(List or Table Column)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 50

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

2i External Designator (Load)

5]!
6
7 Internal Name (must bl list or table column

9

*Standard External Designator and Internal Name 4 and 5 half word format.

3-159

ISSUE DIGITAL PATTERN (Scalars)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 51

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

3 External Designator (Load)

5 Number of Internal Names (0On<15) If n=O, then External Designator must
be subroutine type.

6
7
8 1st Internal Name (must be scalar, list element or table element)

10

11
12
13 2nd Internal Name
14
15

n+5
n+6
n+7 nth Internal Name
n+8
n+91

*Standard External Designator and Internal Name 4 and 5 half word format.

3-160

TIME PREFIX

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 52

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 0 = After
1= When

2 Function Designator array number

5 Internal Name for Time Value
6

*Standard Internal Name 5 half word format.

3-161

C

STOP STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 54

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number (HWI=O if HW2=0)

2 Number of Entries (Restart Labels, 05n50l)

3 Ist Restart Label

4 2nd Restart Label

n+2 nth Restart Label

3-163

REQUEST KEYBOARD STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 55

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Function Designator Variable Number (Input Device)

4 Internal Name

7 Number of additional Internal Names (0On-25)

8
9 *Zero in the 1st HW of an Internal Name

10 1st Internal Name indicates a new record or a carriage
11 return
12

13!
141
15. 2nd Internal Name
16!
17

n+7
n+8
n+9 nth Internal Name
n+l
n+l 1

*Standard Internal Name 5 half word format.

3-164

CONDITION PREFIX
(If/Then Variation)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 56

3 Continuation Code = o

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

S **

1 Comparison Test

*Standard Comparison Test 17 half word format.

3-165

CONDITION PREFIX
(Verify)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 57

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

2 Time Variable (Zero in none specified)

3 Else/Then Code

0 = Then
I = Else

Comparison Test

20

21

Internal Time Value Variable

25

*Standard Comparison Test 17 half word format.

3-166

OUTPUT EXCEPTIONS

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 58

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* *

3 Internal Name (Message List)
4 Half words I thru 5 = 0 for Default Message

61;
7
8f External Designator (Output Device)
9

*Standard External Designator and Internal Name 4 and 5 half word format.

3-167

PERFORM PROGRAM

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 59

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Chain12 Reference Number

2 Ist 4 characters of Program Name

76 Ist 4 characters of Revision Label (blank if none specified)

83-161

3-168

LET EQUAL STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 60

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

33 Internal Name

6 Number of Operators and Variables (1-n<55)

7 Ist Operator
8 2nd Operator or 2nd Quantity/Number/Internal Name

n+6
n+71
n+8 Last Quantity/Number/Internal Name
n+98

n+l 0

*Standard Internal Name 5 half word format will be used

*Operators require 1 HW and are defined as follows:

) = -2
+ = -3
- = -4
* -5

/= -6
** = -7

3-169

BEGIN SUBROUTINE

HW STANDARD HEADER.

1 Intermediate Text Record Number

2 Record Type = 61

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Chain 12 Reference Number

2
3 Ist 4 characters of subroutine name
4

5 Number of parameters (O-n10O)
l = Internal Name

st Parameter type {= Function Designator

7 Ist parameter Variable Sequence Number

8 2nd'parameter type

9 2nd parameter Variable Sequence Number

n+5 nth parameter type

n+6 nth parameter Variable Sequence Number

3-170

DECLARE TEXT TABLE

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 62

3 Continuation Code = 0 or 1

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Number of Rows

3 Number of Columns

4 Number of Characters per Entry

*A type 62 Intermediate Text Record must precede a group of type 63
Intermediate Text Records.

3-171

DECLARE TEXT TABLE

(Row Initialization)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 63

3 Continuation Code = O or 1 (1 if continuation of row)

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Row Number

3 Ist Column Number This Entry

4 Last Column Number This Entry

5 Text Data for st Column this row

y+1
y+2) Text Data for Last Column This row
y+3
y+4

A type 62 Intermediate Text Record must precede a group of type 63 Intermediate
Text records. Each row requires a separate type 63 Intermediate Text Record.

3-172

DISABLE INTERRUPT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 64

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Number of statements to be disabled

0 implies "disable all"

2 1st statement number to be disabled

3 2nd statement number to be disabled

n+l Last statement number to be disabled

3-173

WHEN INTERRUPT STATEMENT

HW STANDARD HEADER,

1 Intermediate Text Record Number

2 Record Type = 65

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Variable Sequence Number

2 Variable Type

3 Variable Address

3-174

GOAL STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 66

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 Number of parameters (O-n:10)

4 Ist Parameter

6

7]

9I 2nd Parameter

10

n+i
n+2
n+3 nth Parametern+4
n+5

*Standard External Designator or Internal Name 4 and 5 half word format.
Function Designator Ist half word will be -1.

3-175

RESUME STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 67

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

3-176

RETURN TO

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 68

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

1 0 = Perform Subroutine and return

+ integer = Perform subroutine and return to this step number

*This Intermediate Text record type is found in conjunction with a type 65

Intermediate Text Record.

3-177

3.2.4 Chain Definitions

The Symbol Table used by the GOAL Compiler consists of ten separate tables
or chains. Each chain contains a unique type of symbol, i.e., internal
names, step numbers, etc. The number given to a chain is the location in
the symbol table of the pointer to the first entry of the chain. Each
entry of the chain has a pointer to the next entry. The last entry of
each chain points to a location in the table which contains a -1.

The chains are numbered 1 through 7 and 10 through 12. The locations that
would normally be used for chains 8 and 9 are reserved for special use.
Location 8 contains the -1 which is used by the chains to signify the last
entry. Location 9 contains the pointer to the next available location in
the table.

The following pages contain a graphical description of the SYMTAB table,
the standard chain headers, and the format for each chain type.

3-178

SYMTAB TABLE FORMAT

The following is a representation of the SYMTAB table before any entries
have been added to the chains.

SYMTAB
LOCATION CONTENTS CHAIN TYPE

1 8 Internal Names

2 8 Statement Labels

3 8 Function Designators

4 8 Abbreviations (replace Statement)

5 8 Data Bank Names

6 8 MACRO Names

7 8 MACRO Parameters

8 -1 -1

9 13 Next Available Location

10 8 Subroutine Names

11 8 Statement Labels (special usage)

12 8 Subroutine/Program Names

13

Chain Entries

n

3-179

CHAIN HEADER FORMAT

Each chain has a standard header which precedes the variable data associated
with each individual chain. The standard header is as follows:

HW# CONTENTS DEFINITION

1 n Number of characters in locations

2 1st Character 2 through m

Symbol variable for each type of chain

m nth Character
Forward

m+l Pointer Pointer to next entry in the chain

m+2 DefinitionNumber Expanded source statement listing number

m+3 Reference
Count Number of times the variable has been

referenced

3-180

CHAIN 1. INTERNAL NAMES

N CHARACTER COUNT

CHAR 1

INTERNAL NAME
STANDARD I

HEADER CHAR N

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

VARIABLE SEQUENCE NUMBER

1-12 TYPE

X NUMBER OF ROWS

Y NUMBER OF COLUMNS

i* MAXIMUM NUMBER OF CHARACTERS

* COLUMN POINTERS

Y

1 } ROW POINTERS

X

*This entry is included
only with Type 12 data.

3-181

CHAIN 2. STATEMENT LABELS

1 CHARACTER COUNT

STATEMENT LABEL

STANDARD
HEADER FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

STATEMENT TYPE

3-182

CHAIN 3. FUNCTION DESIGNATOR

N CHARACTER COUNT

CHAR 1

* FUNCTION DESIGNATOR
STANDARD "
HEADER CHAR N

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

1-8 TYPE

ADDRESS

DATA BANK NUMBER

J-183

CHAIN 4. ABBREVIATIONS (REPLACEMENTS)

N CHARACTER COUNT

CHAR 1 NAME, FUNCTION

I DESIGNATOR OR TEXT TO
STANDARD I BE REPLACED

HEADER CHAR N

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

X CHARACTER COUNT

CHAR 1 1 REPLACEMENT NAME,
FUNCTION DESIGNATOR

OR TEXT
CHAR X

3-184

CHAIN 5. DATA BANK NAMES

N CHARACTER COUNT

CHAR 1

........ -.. ._ _ DATA BANK NAME

STANDARD CHAR N
HEADER

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

DATA BANK NUMBER

X CHARACTER COUNT

CHAR 1

REVISION LABEL

CHAR X

3-18:

CHAIN 6. MACRO LABELS

N CHARACTER COUNT

CHAR 1

! MACRO LABEL

STANDARD
HEADER CHAR N

FORWARD POINTER

DEFINITION NUMBER

1-10 NUMBER OF PARAMETERS

NUMBER OF FIRST RECORD IN MACRO FILE

NUMBER OF LAST RECORD IN MACRO FILE

3-186

CHAIN 7. MACRO PARAMETERS

N CHARACTER COUNT

CHAR 1

MACRO PARAMETER

STANDARD
HEADER CHAR N

FORWARD POINTER

PARAMETER NUMBER

REFERENCE COUNT

3-187

CHAIN 10. SUBROUTINES NAMES

N CHARACTER COUNT

CHAR 1

SUBROUTINE NAME

STANDARD CHAR N
HEADER

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

VARIABLE SEQUENCE NUMBER

3-188

CHAIN 11. STATEMENT LABELS TO BE VALIDATED

1 CHARACTER COUNT

STATEMENT LABEL

STANDARD FORWARD POINTER
HEADER

DEFINITION NUMBER

REFERENCE COUNT

0 OR 36 RELEASE STATEMENT TYPE CODE

0 OR 65 DISABLE STATEMENT TYPE CODE

3-189

CHAIN 12. PROGRAM/SUBROUTINE NAME

N CHARACTER COUNT

CHAR 1

* PROGRAM OR SUBROUTINE NAME

STANDARD
HEADER -

FORWARD POINTER

DEFINITION NUMBER

REFERENCE COUNT

3-190

3.2.5 Common Definitions

GOAL routines use 'common' storage locations for passing data between GOAL
mainline routines, action routines, and data bank maintenance routines.
This section gives the relative order of 'common' locations within each
'common block' and describes briefly each 'common' location.

COMMON BLOCK COMMON LOCATIONS

BLANK COMMON COMBLK, STXMAX, STMMAX, SYMMAX, STPMAX, K, RC,
Z, ROOT, STMTK, LASTK, ENDK, STMTNO, STPNO,
INREC, SEQFLD, ENDFLG, FDFLG, SYMFLG, LBLFLG,
DGFLG, SRFLG, EXFLG, RECCNT, RECIST, SRLNCT,
SRPGCT, ERRCTR, EXLNSZ, EXPGCT, EXPGSZ, EXLNCT,
ERRTAB, DATE, PRTLNE, TITLE, CHRTAB, ACTCOM,
TLNOER, XRFFLG, TXTFLG, CTLFLG.

COMS07 - PARMCT, PARTYP, TEXPT, SAVCC, STYPE, NAMSV4.

COMS17 - FDCTR, TYPPT, FDCHK, FDTPPT, FDPKU, EXSUBR.

COMS22 - CMCNT, IHDBN.

COMS44 - ELSSVE, PNCHFG

COMS48 - AFTRWN, FDAFN, RTHR, INCNT, OPCNT, LBPNT, VART,
ILNG, ELSTHN, DPR, OUTEX

COMS49 - TYPPT, SUB, FDCHK, FDROWS, COLSUB

COMS51 - CONVRT

DBCM - MBLOCK, DBLOCK, DBREC, PREC, MLO, MMID, MHI

DBFWIN - DBFWIN

DBHWIN - DBHWIN

DBNKNM - DBNKNM

DSCOM - TLNOWR, UNRFNM, UNRFSN, UNDFNM, UNDFSN, UNDFFD,
RFDSWI, RFRLCC

INPCOM - LTFLG, ABBRFG

INTTXT - TXTRCD

LMBUF - LMBUF

3-191

COMMON BLOCK COMMON LOCATIONS

LVECOM - LVEFLG

MACCOM - MACFLG, FLSHFG, MEXPFG, EXPDFG, EXECFG, LSTREC,
NXTMAX, RLOTFG, FSTREC, NXTMAC, PLSTAB

PRECOM - PREFLG

REPEAT - REPEAT

STMTAB - STMTAB

STPTAB - STPTAB

STXTAB - STXTAB

SUBCOM - SUBTXT, J, SUBFLG, SUBCNT, SVPRCC, STPSVB, STPFLG, Q,
ZAP

SYMTAB - SYMTAB

Brief description of 'common' locations:

ABBRFG - Halfword integer in labeled common /INPCOM/. Used by INPUT to
indicate that an abbreviation is being processed.

ACTCOM - Array of 200 halfwords in blank common. Symbolic names used for
communication between 'action' routines are equivalenced to posi-
tions in ACTCOM.

AFTRWN - Halfword integer in labeled common /COMS48/. Used as a flag to
indicate whether SUB48 is processing the 'AFTER' or 'WHEN' option
of the time prefix. AFTRWN = 0 indicates the 'AFTER' option;
AFTRWN = 1 indicates 'WHEN'.

ALPHA - Array of 26 halfwords beginning at CHRTAB (11) in blank common.
Used as a table to contain the 26 alphabetic characters.

BEGINP - Halfword integer equivalenced to ACTCOM (95). It is initialized
to zero in GINIT. It is set to 1 in SUBO6 to indicate that a
'Program' is being compiled.

BEGINS - Halfword integer equivalenced to ACTCOM (94). It is initialized
to zero in GINIT. It is set to 1 in SUBO7 to indicate that a
'Subroutine' is being compiled.

BVAL - Fullword integer equivalenced to ACTCOM (3). It is used to contain
the integer value, (binary value), of numeric type fields used in
GOAL statements. It is computed and set in ACTION.

3-192

CHRTAB - Array of 80 halfword integers in blank common. List of 80 char-
acters used to contain the GOAL character set. It is loaded from
the syntax file by GINIT. CHRTAB is used by all 'ACTION' routines
that test characters in the GOAL source statements.

CLABEL Halfword integer equivalenced to ACTCOM (61). It is used to con-
tain the integer value of the numeric field of a statement label.

CLFW Fullword integer equivalenced to DBFWIN (11) in labeled common
/DBFWIN/. CLFW is equal to zero, and is used to insure that
there will be a zero location following the data bank sequence
numbers.

CLHW Halfword integer equivalenced to DBHWIN (11) in labeled common
/DBHWIN/. CLHW is equal to zero, and is used to insure that
there will be a zero location following the pointers into the
data bank sequence table.

CMCNT - 1. Halfword integer in labeled common /COMS22/. Used by SUB22 to
count the number of commas in a GOAL statement.

2. Halfword integer equivalenced to ACTCOM (184). It is used as
a counter for initial values in DECLARE LIST/TABLE statements.

CNT - Halfword integer equivalenced to ACTCOM (9). It is used as a
utility counter in action routines.

CNVRT - Fullword integer equivalenced to ACTCOM (53). It is used as a
control word in converting numeric fields to actual values.

COLSUB - Halfword integer in labeled common /COMS49/. Used by SUB49 to
contain the number of columns in a table.

COMBLK - Halfword integer used to insure proper boundary alignment in
blank common.

CONDIF - Halfword integer equivalenced to LMBUF (18). Used by SUB48 to indicate
whether the 'IF' or 'VERIFY' option of the 'VERIFY' prefix is being
processed. CONDIF = 1 indicates the 'IF' option; CONDIF = 0 indicates
'VERIFY'.

CONTC - Halfword integer equivalenced to HEADER (3) in labeled common /INTTXT/.
Used as a continuation flag in intermediate text records.

CONVRT - Halfword integer in labeled common /COMS51/. Used as a flag by the
Compiler Directives subroutine SUB44. When CONVRT is set to one,
SUB51 will substitute GOAL words and phrases for a short form
dialect.

3-193

CTLFLG - Halfword integer in blank common. Used as a flag to indicate to
EXLIST that the statement in the buffer is a compiler directive,
and it is not to be printed. CTLFLG is set by SUB44.

DATAPT - Halfword integer equivalenced to ACTCOM (200). It is used to save
a pointer to the 'table name functions' entry in SYMTAB. It is
set by SUB17.

DATE - Array of 8 halfword integers in blank common. Used to contain the
'date' field printed in the EXPANDED SOURCE listing. This array
is set to 'blanks' in GINIT. It may be modified by compiler direc-
tive in SUB44.

DBFWIN - Array of 11 fullwords in labeled common /DBFWIN/. Used as a table
to contain the data bank numbers which are in use.

DBHWIN - Array of 12 halfwords in labeled common /DBHWIN/. Used as a table
to contain pointers into table DBFWIN. This table determines the
sequence which will be used to look up entries in data banks when
more than one data bank is in use.

DBINT - Halfword integer equivalenced to DBNKNM (1) in labeled common
/DBNKNM/. DBINT is the integer length of the data bank name
contained in DBNKNM. It is also the first character of the data
bank name.

DBLOCK - Array of 383 fullwords in labeled common /DBCM/. Used by data bank
maintenance routines for upper and lower level directory blocks.

DBNKNM - Array of 34 halfwords in labeled common /DBNKNM/. Used by SUB22,
SUB42, and FDLKUP to contain the data bank name.

DBNUM - Halfword integer equivalenced to DBHWIN (12). Used to count the
total number of data banks that have been requested by 'USE data
bank' statements.

DBREC - Array of 43 fullword integers in labeled common /DBCM/. Used to
contain a record from the data bank.

DBUSE - Halfword integer equivalenced to ACTCOM (199). It is used to
indicate the number of DATA BANKS in use. It is initialized to
zero in GINIT. It is updated in SUB42 and SUB22.

DGFLG Halfword integer in blank common. Used as a control word to enable
generation of the Diagnostic Summary listing. It is set to 1 (en-
abled) in GINIT. It may be modified via compiler directive in SUB44.
It is set to zero to inhibit generation of the listing.

3-194

DIGIT - Array of 10 halfwords beginning at CHRTAB (1) in blank common.
Used as a table to contain the numeric digits 1 through 9 and
zero.

DIMTYP - Halfword integer equivalenced to ACTCOM (98). It is used as a
counter to determine the engineering units code. It is set to
1 by ACTION routine #18. It is incremented by 1 in ACTION
routine #52. When the units field is recognized by the PARSER,
DIMTYP contains the correct code.

DPLY - Halfword integer equivalenced to ACTCOM (44). Contains the
FORTV variable number representing the internal name for the
DISPLAY option when processing 'OUTPUT EXCEPTION'.

DPNT - Halfword integer equivalenced to ACTCOM (187). It is used to
contain the (number of columns) x 2 + 3 for DECLARE tables.

DPR - Halfword integer in labeled common /COMS48/. It is used by
SUB48 when processing the 'OUTPUT EXCEPTION' to indicate
whether the 'DISPLAY', 'PRINT', or 'RECORD' option was speci-
fied. DPR = 0 indicates 'DISPLAY', DPR = 1 indicates 'PRINT',
and DPR = 2 indicates 'RECORD'.

ELSSVE - Halfword integer in labeled common /COMS44/. It is used to save
the expanded listing line size when entering the 'PUNCH' mode.
When leaving the 'PUNCH' mode, the line size is restored to the
value in ELSSVE.

ELSTHN - Halfword integer in labelled common /COMS48/. It is used to indicate
which option of the 'VERIFY' prefix is being processed. ELSTHN = 0
indicates 'THEN' (or comma) option; ELSTHN = 1 indicates 'ELSE OUTPUT
EXCEPTION'; ELSTHN = 2 indicates 'ELSE'; and ELSTHN = 3 indicates
semicolon (;).

ENDFLG - Halfword integer in blank common. It is the flag used to indicate
that the parsing phase of the GOAL compilation is complete. It is
set to 1 when the program 'END' statement is parsed. This cues the
compiler to generate compilation summary listings.

ENDK - Halfword integer in blank common. It is a pointer containing the sub-
script of the last significant character of the GOAL statement being
parsed. It is set when the semicolon (;) is found. If the parse
fails, it is set by FIXUP.

ENTCNT - Halfword integer equivalenced to ACTCOM (185). It is used to save
the specified number of entries in DECLARE LIST/TABLE.

3-195

ERRCTR Halfword integer in blank common. It is a counter containing the
number of errors detected in the current GOAL statement. It is
incremented by one each time ERROR is called and is reset by EXLIST
for each GOAL statement.

ERRTAB - Array of 15 halfword integers in blank common. It is a list of 15
pointers containing the positions of errors identified in STMTAB.
ERRCTR contains the number of entries in ERRTAB for the current
GOAL statement. ERRTAB is updated by the routine, ERROR.

EXECFG - Halfword integer in labeled common /MACCOM/. Used as a flag to
signify 'EXECUTE Only' statement. It is set to 1 in SUB04 if an
'EXECUTE Only' statement is encountered.

EXFLG Halfword integer in blank common. Used as a control word to enable
eneration of the Expanded Source Record listing. It is set to 1,
enabled), in GINIT. It may be modified via compiler directive in

SUB44.

EXLNCT Halfword integer in blank common. Used as a counter to contain the
number of lines used on the current page of the Expanded Source
Listing. It is set to 50 in GINIT. It is incremented by 1 before
each line is printed in EXLIST. When EXLNCT exceeds EXPGSZ, a new
page is started and EXLNCT is reset to zero.

EXLNSZ - Halfword integer in blank common. Used as a control word to con-
tain the number of GOAL statement characters per line in the
Expanded Source Listing. It is set to 100 in GINIT. It may be
modified via compiler directive in SUB44.

EXPDFG - Halfword integer in labeled common /MACCOM/. Used as a flag to
signify 'EXPAND' only statement was found. EXPDFG is set to one
in SUB21 if an 'EXPAND' only statement is found.

EXPGCT - Halfword integer in blank common. Used as a counter to contain the
number of pages generated in the Expanded Source listing. It is
incremented by EXLIST each time a new page is started. It may be
modified via compiler directive in SUB44.

EXPGSZ Halfword integer in blank common. Used as a control word to con-
tain the number of lines per page on the Expanded Source listing.
It is set to 50 in GINIT and may be modified via compiler direc-
tive in SUB44.

EXSUBR - Halfword integer in labeled common /COMS17/. Used as a flag to
indicate whether 'function designator' or 'table name functions'
of an external designator is being processed.

3-196

EXTDES - Array of 4 halfword integers equivalenced to ACTCOM (195). This
array contains the 'standard' representation for 'external desig-
nator'.

FDAFN - Halfword integer in labeled common /COMS48/. Contains the FORTV
variable name assigned to a function designator.

FDCHK - Halfword integer in labeled common /COMS17/ and /COMS49/. Used as
a variable subscript for accessing in SYMTAB function designators
which are row names of a table.

FDCNT - Halfword integer equivalenced to ACTCOM (62). It is used to con-
tain the number of characters stored in NAMEBF for function desig-
nators. It is updated in ACTION.

FDCTR - Half integer in labeled common /COMS17/. Used by SUB17 to contain
the number of function designators contained within an external
designator.

FDFLG - Halfword integer in blank common. Control word used to enable
generation of the function designator cross-reference listing.
It is initialized to 1 in GINIT (enabled). It may be modified
via compiler directive in SUB44.

FDFND - Halfword integer equivalenced to ACTCOM (189). It is used to
indicate if a 'function designator' was found in action #20. It
is set in ACTION.

FDPKU - Halfword integer in labeled common /COMS17/. Used as a variable
subscript to access the FORTV name of a function designator.

FDROWS - Halfword integer in labeled common /COMS49/. Used by SUB49 to
indicate the number of rows in a table.

FDTPPT - Halfword integer in labeled common /COMS17/. Used by SUB17 to
indicate type of function designator which was accessed from
SYMTAB by the variable subscript TYPPT.

FLSHFG - Halfword integer in labeled common /MACCOM/. Used by SUB05 to
cause the macro body to be flushed following an error in the
'BEGIN MACRO' statement. A search for the 'END MACRO' statement
is made disregarding all intermediate data. When found, all
flags are cleared and processing continues normally.

FORTV - Halfword integer equivalenced to ACTCOM (60). It is used as a
counter to determine the internal identification sequence number
assigned to internal names which are explicitly or implicitly
defined in the GOAL program. FORTV is initialized to zero in GINIT.

3-197

FRSTP - Halfword integer equivalenced to REPEAT (204) in labeled common
/REPEAT/. Contains first step number to be repeated in a
'REPEAT' statement.

FSTREC - Fullword integer in labelled common /MACCOM/. Used as a counter
for the next record to be read during macro expansion. It is
set to the first record number of a macro body in SUB21 when an
'EXPAND AND/OR EXECUTE' statement is encountered. It is used in
INPUT as a relative record number in a direct access 'WRITE'
statement which requires a fullword integer. It is incremented
after each 'READ' in INPUT. It is checked against LSTREC before
each 'READ' in INPUT to determine the end of the macro body.

FVAL - Fullword floating point variable equivalenced to ACTCOM (55). It
is used to contain the floating point value for numeric fields
processed in GOAL statements.

FVALT - Fullword floating point variable equivalenced to ACTCOM (57). It
is used for temporary storage of FVAL.

FWTEXT - Array of 200 fullword integers in labeled common /INTTXT/ used to
assemble the 'data' portion of intermediate text records. FWTEXT
is equivalenced to TXTRCD (7).

GTOFLG - Halfword integer equivalenced to ACTCOM (97). It is initialized
to zero in GINIT. It is incremented by 1 in SUB23 to indicate
that a GO TO statement had been found. It is subsequently tested
to insure that the following statement has a label.

HEADER - Array of 6 halfword integers in labeled common /INTTXT/. HEADER
is equivalenced to TXTRCD (1). It is used to assemble the stan-
dard 6 word header of the intermediate text records.

HWTEXT - Array of 400 halfword integers equivalenced to TXTRCD (7). Used
to assemble the 'data' portion of intermediate text records.

IHDBN - Halfword integer in labeled common /COMS22/ used to store the
sequence number of data bank numbers assigned in table DBHWIN.

ILNG - Halfword integer in labeled common /COMS48/ used by SUB48 to contain
the length of intermediate text.

INCNT - Halfword integer in labeled common /COMS48/ used to indicate
whether an external designator and associated names of a limit
test have been placed into the output buffer. It points to the
next five word array within that buffer into which the names
will be moved. It also insures that no more than three names
are to be moved.

3-198

INREC - Array of 80 halfword integers in blank common. INREC is the input
buffer for GOAL source statements. It is loaded in routine INPUT
from input stream or macro file. It is used to generate the source
record listing in SRLIST. Characters are moved from INREC to
STMTAB for parsing.

INTCOL - Halfword integer equivalenced to ACTCOM (193). It is used to contain
the 'column' code for the current 'internal name'.

INTLNG - Halfword integer equivalenced to ACTCOM (194). It is used to contain
the 'length' code for the current 'internal name'.

INTNME - Halfword integer equivalenced to ACTCOM (191). It is used to contain
the internal identification number for the current 'internal name.'

INTRNM - ARRAY of 5 halfword integers equivalenced at ACTCOM (190). This
array contains the following variables:

INTTYP - ACTCOM (190)
INTNME - ACTCOM (191)
INTROW - ACTCOM (192)
INTCOL - ACTCOM (193)
INTLNG - ACTCOM (194)

It is used to assemble the 'standard' representation of the 'internal
name.'

INTROW - Halfword integer equivalenced to ACTCOM (192). It is used to contain
the 'row' code for the current 'internal name'.

INTTYP - Halfword integer equivalenced to ACTCOM (190). It is used to contain
the 'type' code for the current 'internal name'.

J - Halfword integer in labeled common /SUBCOM/. PARSER uses this as a
pointer in STXTAB to the header of the syntax equation being parsed.
In SUB26 this same common location is called MARKER.

K - Halfword integer in blank common used as a pointer to contain the
subscript of the current character position in STMTAB for the state-
ment being parsed. It is initialized in PREP prior to parsing and
it is updated by the PARSER and any 'action' routines that process
the statement. K must be saved and restored by action routines that
fail (RC 0).

3-199

KSAVE - Halfword integer equivalenced to ACTCOM (8). It is used to save
current value of K at entry to ACTION.

LASTK - Halfword integer in blank common used as a pointer to contain the
subscript of the word in STMTAB immediately following the last
character loaded with current data. LASTK is updated by INPUT.
It is tested, as required, to insure that data in STMTAB is current.

LASTP - Halfword integer equivalenced to REPEAT (205) in labeled common
/REPEAT/. Contains last step number to be repeated in a 'REPEAT'
statement.

LBLFLG - Halfword integer in blank common used as a control word to enable
generation of the statement label cross-reference listing. It is
set to one (enabled) in GINIT. It may be modified via compiler
directive in SUB44. It is set to zero to inhibit generation of
the listing.

LBPNT - Halfword integer in labeled common /COMS48/ used by SUB48 as a
pointer to the next entry in LMBUF.

LMBUF - Array of 18 halfwords in labeled common /LMBUF/ used by SUB48 to
contain FORTY names assigned to quantities used for limit testing.

LNG - Halfword integer equivalenced to ACTCOM (59). It is used to con-
tain field lengths during processing in ACTION.

LOPCTR - Halfword integer equivalent to REPEAT (206) in labeled common
/REPEAT/. Used as a counter to contain the number of times
steps are to be repeated in a 'REPEAT' statement.

LSTREC - Halfword integer in labeled common /MACCOM/ used to contain the
last record number of a macro body. It is set in SUB21 after an
'EXPAND AND/OR EXECUTE' macro statement has been found. It is
tested in INPUT to determine if the entire macro body has been
used as input to the compiler.

LTFLG - Halfword integer in labeled common /INPCOM/. Used by INPUT to
indicate that a character string began with a 'less than' symbol
(<) and therefore should close with a 'greater than' (>) symbol
rather than 'close parenthesis'.

LVEFLG - Halfword integer in labeled common /LVECOM/ which is set to one
when a 'LEAVE' statement is encountered. This causes all data
following the 'LEAVE' statement to be ignored until a 'RESUME'
statement is parsed. When the 'RESUME' statement is parsed LVEFLG
is set to zero.

3-200

MACFLG - Halfword integer in labeled common /MACCOM/ used as a flag for
'BEGIN MACRO' statement in EXLIST. Can have value of 0, 1, or
2.

0 - implies no macro being processed
continue normally

1 - implies record being processed is in macro body and
should be written in macro file

2 - implies 'BEGIN MACRO' statement has been found and
macro body follows.

This flag is initialized to zero in GINIT. It is set to two in
SUB05 and reset to 1 in EXLIST. It is cleared to zero in SUB05
when an 'END MACRO' statement is found.

MARKER - Halfword integer in labeled common /SUBCOM/ used by SUB26 as a
pointer to the header in STXTAB of the syntax equation being parsed.
PARSER calls this same common location J.

MBLOCK - Array of 383 fullword integers in labeled common /DBCM/ used by the
data bank maintenance routines for the master data bank directory
block.

MEXPFG - Halfword integer in labeled common /MACCOM/ used as a flag to
signify 'macro expansion mode' is in effect. This means that
an 'EXPAND AND/OR EXECUTE' statement was encountered and input
records to the compiler should come from the body of the pre-
viously defined macro with the same name. This flag is set to
1 in SUB21 when statement is encountered. It is checked in
EXLIST to determine if EXECFG and EXPDFG should be checked
for printing purposes. It is also checked in INPUT to see if
records should come from the macro file or the input stream.
It is cleared in INPUT when the entire macro has been used as
input to the compiler.

MHI - Halfword integer in labeled common /DBCM/ used by data bank
maintenance routines during search of the directory.

MLO - Halfword integer in labeled common /DBCM/ used by data bank
maintenance routines during search of the directory.

MMID - Halfword integer in labeled common /DCBM/ used by data bank
maintenance routines during search of the directory.

3-201

NAMCNT - Halfword integer equivalenced to ACTCOM (63). It is used to
contain the number of characters stored in NAMEBF for 'names'.
It is updated in ACTION.

NAMEBF - Array of 32 halfword integers used to assemble the characters
of a 'name' used in GOAL statements. The number of characters
used is contained in NAMCNT. NAMEBF is equivalenced to (starts
at) ACTCOM (10) and uses consecutive locations.

NAMSV4 - Array of 4 halfwords in labeled common /COMS07/ used by SUB07
to save the first 4 digits of a name in NAMEBF.

NCR - Halfword integer equivalenced to ACTCOM (5). It is used to con-
tain the most recent significant character found by NEXTCR. It
is set in NEXTCR, (NCR = STMTAB (K-l)) on return.

NMFLD - Halfword integer equivalenced to ACTCOM (183). It is used to
contain the position of the beginning of a 'name' field in
STMTAB. It is set in ACTION.

NMFND - Halfword integer equivalenced to ACTCOM (188). It is used to
indicate if a 'name' was found in action #29. It is set in
ACTION.

NUMBUF - Array of 32 halfword integers equivalenced to ACTCOM (66) and
occupying sequential locations. It is used to contain the
characters of numeric fields.

NUMCNT - Halfword integer equivalenced to ACTCOM (64). It is used to con-
tain the number of characters stored in NUMBUF for numeric fields.
It is updated in ACTION.

NXTMAC - Fuliword integer in labeled common /MACCOM/ used as a counter for
the next available record in the macro file when creating a macro.
It is initialized to 11 in GINIT. Each time a macro body record
is written into the file, it is incremented by 1. It is used in
EXLIST as a counter and as a relative record number in a direct
access 'WRITE' statement which requires a fullword integer.

NXTMAX - Halfword integer in labeled common /MACCOM/ which contains the
maximum record number allowable in the macro file. It is ini-
tialized to 1000 in GINIT. It is tested in EXLIST when macro body
records are written in the macro file. If an attempt is made to
exceed this maximum, a call to SYSERR with a parameter of 6 is
made. This terminates the compiler.

3-202

OPCNT - Halfword integer in labeled common /COMS48/ which contains a
number that represents the type of relational test in a condition
prefix.

OUTEX - Array of 10 halfwords in labeled common /COMS48/. Contains vari-
ables which control displaying, printing, or recording of the
'OUTPUT EXCEPTIONS' option of the condition prefix.

PARMCNT - Halfword integer in labeled common /COMS07/ used by SUB07 to indi-
cate the number of parameters passed to a subroutine in a 'BEGIN
SUBROUTINE' statement.

PARTYP - Halfword integer in labeled common /COMS07/ used by SUB07 to
indicate type of parameter passed in a 'BEGIN SUBROUTINE'
statement. PARTYP = 1 indicates a function designator; PARTYP =
0 indicates an internal name.

PLSTAB - Array of 51 halfwords in labeled common /MACCOM/. PLSTAB parallels
STPTAB. It is set by INPUT to mark for EXLIST which statements
should have a plus sign (+) signifying macro expansion.

PNCHFG - Halfword integer in labeled common /COMS44/ which signifies that
'PUNCH' has been specified in a compiler directive. The line
size is reduced to 80, and a deck is output. This flag is tested
by EXLIST.

PREC - Fullword integer in labeled common /DBCM/ which is used by the data
bank maintenance routines in a search of the data bank directory.

PREFLG - Halfword integer in labeled common /PRECOM/. It is set by SUB52
when data bank input is being preprocessed. It is tested by
SUB05. If PREFLG = 1, SUB05 outputs processed macros with data
bank input rather than writing them to the macro file.

PRNT - Halfword integer equivalanced to ACTCOM (45). Contains the FORTV
variable number representing the internal name for the PRINT
option when processing 'OUTPUT EXCEPTION'.

PROCFG - Halfword integer equivalenced to ACTCOM (96). PROCFG = 1 indi-
cates the first procedural statement has been encountered. EXLIST
prints the message

**********BEGIN OPERATING STEPS**********

PRTLNE - Array of 130 halfword integers in blank common. Buffer of 130
characters used to assemble the print line in EXLIST. The first
100 characters are set to blanks in GINIT. It is subsequently
cleared in EXLIST after printing each line.

3-203

Q - Halfword integer in labeled common /SUBCOM/ which contains
the syntax table number from the input source deck control
card. It is used by GINIT to load the correct syntax
table.

QTYPE - Halfword integer in blank common equivalenced to ACTCOM (99).
Control word used to indicate if a 'quantity' type name has
been assigned engineering units. It is updated in ACTION.

RC - Halfword integer in blank common used as a flag to indicate
success or failure in parsing elements of GOAL statements.
It is set by PARSER and/or 'action' routines. It is used by
PARSER in finding successful paths through the syntax tables.

RC = 0 implies 'successful'
RC = -1 implies 'try alternate' or 'error'
RC > 0 implies 'error', RC = error number

RECCNT - Halfword integer in blank common used as a counter to contain
the number of the current source record. It is set to zero in
GINIT. It is incremented by 1 in SRLIST for each record proc-
essed from the GOAL source input stream.

RECD - Halfword integer equivalenced to ACTCOM (46). Contains the
FORTV variable number representing the internal name for the
RECORD option when processing 'OUTPUT EXCEPTION'.

REC1ST - Halfword integer in blank common used as a control word to con-
tain the source record number for the first record of the current
GOAL statement. It is set to RECCNT in PARSER.

REPEAT - Array of 208 halfword integers in labeled common /REPEAT/. Con-
sists of 8 working locations followed by 100 two-halfword entries
containing the last step number in the loop and the FORTV name of
the loop for all 'REPEAT' statements referenced in a program.

REPTEN - Halfword integer equivalenced to REPEAT (203) which contains the
number of table entries in REPEAT.

RFDWSI - Halfword integer in labeled common /DSCOM/ used by DIAGSM to
indicate the total number of step numbers referenced on a
DISABLE statement but not defined on a WHEN INTERRUPT state-
ment.

RFLCC - Halfword integer in labeled common /DSCOM/ used by DIAGSM to
indicate the total number of step numbers referenced on a
RELEASE statement but not defined on a CONCURRENT statement.

RLOTFG - Halfword integer in labeled common /MACCOM/ used as a flag for
statement table roll-out. It is set to 1 in SUB21 when an
'EXPAND AND/OR EXECUTE' macro statement is encountered. It is
checked in RESET to determine if the statement table should be
saved. If it is on, the statement table is temporarily written
to disk so a macro body can be processed and normal processing
can continue following the macro expansion. It is set to zero
following roll-out in RESET.

3-204

RLTXT - Array of 200 fullword floating point words equivalenced to
TXTRCD (7) in labeled common /INTTXT/. Used to assemble the
'data' portion of intermediate text records.

ROOT - Halfword integer in blank common used as a pointer to contain
the subscript of the 'root' syntactical element control block
in STXTAB. ROOT is initialized when the syntax table is loaded
in GINIT. It is used by PARSER to locate the starting point in
the syntax table for parsing each GOAL statement.

RPNAM - Halfword integer equivalenced to REPEAT (207). Contains the
FORTV variable name assigned to the repeat loop.

RTHR - Halfword integer in labeled common /COMS48/ used as a return

parameter to allow common coding to be used in a subroutine.
It is used as the parameter in a 'computed GO TO' following
the shared coding.

SAVCC - Halfword integer in labeled common /COMS07/ used by SUB07 to
save the completion code from LOOKUP.

SEQFLD - Halfword integer in blank common used as a control word to
contain the number of columns reserved for sequencing data on
the input source records. The sequencing field is the right-
most portion of the input record. SEQFLD is initialized to
zero in GINIT and may be modified via compiler directive in
SUB44.

SPCHAR - Array of 21 halfwords starting at CHRTAB (37) used as a table
to contain the GOAL special characters.

SRFLG - Halfword integer in blank common used as a control word to
enable generation of the source record listing. It is set to
1 (enabled) in GINIT. It may be modified via compiler direc-
tive in SUB44.

SRLNCT - Halfword integer in blank common used as a counter to contain
the number of lines contained in the current page of the
source record listing. It is initialized to 50 in GINIT. It
is incremented by 1 before each line is printed. If greater
than 50, a new page is generated.

SRPGCT - Halfword integer in blank common used as a counter to contain
the number of pages generated in the source record listing.
It is set to zero in GINIT and is incremented by 1 in SRLIST
each time a new page is started.

3-205

STATE - Halfword integer equivalenced to ACTCOM (6). It is used to
contain the status of logical type fields used in GOAL state-
ments. It is computed and set in ACTION.

STATOF - Same as STOFF.

STATON - Same as STONN.

STMLBL - Array of 5 halfword integers used to assemble the digit char-
acters of a GOAL statement label. It is equivalenced to
ACTCOM (48).

STMMAX - Halfword integer in blank common which contains the system
limit of the size of SYMTAB. It is set to 3501 in GINIT.

STMTAB - Array of 3500 halfword integers in labeled common /STMTAB/
used as a table to contain GOAL source statements during
parsing. STMTAB is loaded by calling routine INPUT. STMMAX
is used to contain the size of STMTAB. STPTAB contains
pointers to individual records contained in STMTAB. STMTAB
is used to generate the expanded source listing.

STMTK - Halfword integer in blank common used as a pointer to contain
the subscript of the first significant character of the current
GOAL statement. It is set by routine PREP. It is used by
PARSER to locate the beginning of the statement in STMTAB.

STMTNO - Halfword integer in blank common used as a counter to contain
the 'internal statement number' for the GOAL statement being
parsed. It is set to zero in GINIT and is incremented by 1
for each statement parsed.

STOFF - Halfword integer equivalenced to ACTCOM (48). Contains the
FORTV variable number representing the condition 'state off'.

STONN - Halfword integer equivalenced to ACTCOM (47). Contains the
FORTV variable number representing the condition 'state on'.

STPFLG - Halfword integer in labeled common /SUBCOM/ used as a flag to
indicate 'END SUBROUTINE' statement has been parsed. The sub-
routine is written to the subroutine file, STPSUB is cleared
and SUBCNT is incremented by 1.

STPMAX - Halfword integer in blank common used to contain the system
limit of the size of STPTAB minus 1. It is initialized to
50 in GINIT.

3-206

STPNO - Halfword integer in blank common used as a counter to contain
the number of blocks of expanded source data contained in
STMTAB. STPNO +1 is the number of associated entries in STPTAB.

STPSUB - Halfword integer in labeled common /SUBCOM/ used as a flag to
indicate whether or not the compiler is in the 'strip subrou-
tine' mode. STPSUB = 1 signals the compiler to 'strip' until
an 'END SUBROUTINE' statement is parsed.

STPTAB - Array of 51 halfword integers in labeled common /STPTAB/ used
as a table of pointers to locate individual records in STMTAB.
This table is updated when the routine INPUT is called. STPMAX
contains the size of STPTAB. STPNO is equal to the number of
records in STMTAB. STPNO +1 is equal to the number of entries
in STPTAB.

STXMAX - Halfword integer in blank common used to contain the system
limit of the size of STXTAB. It is set to 12,000 in GINIT.

STXTAB - Array of 12,000 halfword integers in labeled common /STXTAB/
used as a table to contain syntax data used by the PARSER.
STXTAB is loaded from the syntax file by GINIT. STXMAX contains
the size of STXTAB.

STYPE - Halfword integer in labeled common /COMS07/. Not used.

SUB - Halfword integer in labeled common /COMS49/ used by SUB49 as
a variable subscript to allow common coding to be used for
processing 'row index name' and 'column index name' data into
INTRNM.

SUBCNT - Halfword integer in labeled common /SUBCOM/ used as a counter
to indicate the number of successfully 'stripped' subroutines
in the subroutine file. SUBCNT is incremented by ACTION.

SUBFLG - Halfword integer in labeled common /SUBCOM/ used to determine
whether or not the subroutine file is to be rewound. The sub-
routine file is to be rewound (SUBFLG = 0) only at the end of
a GOAL program compilation and at the beginning of the first
GOAL subroutine compilation.

SUBTXT - Halfword integer in labeled common /SUBCOM/. PARSER sets SUBTXT
to an address in STXTAB which contains the number of characters
in any field which fails to parse. This is used by the converter
subroutine SUB51 to accomplish substitution of GOAL words and
phrases for a short form dialect. The characters to be substi-
tuted begin at the address SUBTXT+1.

3-207

SVPRCC - Halfword integer in labeled common /SUBCOM/ used to contain
the highest condition code in a GOAL compilation. This is
the condition code that will be passed at the end of the run.

SYMFLG - Halfword integer in blank common used as a control word to
enable generation of the internal name cross-reference listing.
It is set to one (enabled) in GINIT and may be modified via
compiler directive in SUB44.

SYMMAX - Halfword integer in blank common used to contain the system
limit of the size of SYMTAB. It is set to 3000 in GINIT.

SYMTAB - Array of 3000 halfword integers in labeled common /SYMTAB/
used to contain symbolic names defined in GOAL source state-
ments. Names are entered and/or verified by LOOKUP. Other
data related to the name may be placed in the table imme-
diately following it, provided that the 'free area pointer'
TBF is updated. SYMMAX contains the size of SYMTAB.

TBF - Halfword integer equivalenced to SYMTAB (9) used as a pointer
to contain the subscript of the first entry in the unused
portion of SYMTAB. TBF is initialized to 13 in GINIT and is
updated by LOOKUP when a symbol is entered in SYMTAB. Action
routines may place additional data in SYMTAB if they update
TBF accordingly. TBF may not exceed SYMMAX.

TBFSAV - Halfword integer equivalenced to ACTCOM (93) used by PREP to
save the value of TBF. This allows for deletion of names from
SYMTAB if the statements containing them are in error.

TCCNT - Halfword integer equivalenced to ACTCOM (65). It is used to
contain the number of characters stored in TSAVE for text
constants. It is updated in ACTION.

TD - Halfword integer equivalenced to ACTCOM (186). It is used as
a flag to indicate if initial values are provided in DECLARE
statement.

TEXPT - Halfword integer in labeled common /COMS07/ used by SUB07 as
a pointer into HWTEXT to the type of parameter being parsed
(PARTYP).

TIME - Fullword folating point integer equivalenced to ACTCOM (181).
It is used to contain the time value for 'time constants'. It
is updated in SUB48.

3-208

TITLE - Array of 100 halfword integers in blank common. It is a list
of characters used to contain the header printed on each page
of the expanded source listing. This array is initialized to
blanks in GINIT. It may be modified via compiler directive in
SUB44.

TLNOER - Halfword integer in blank common used as a counter for the total
number of errors in a GOAL compile. It is used by DIAGSM to set
the condition code. The counter is incremented by ERROR.

TLNOWR - Halfword integer in labeled common /DSCOM/ used by DIAGSM to
indicate the total number of warnings in a GOAL compile.

TRCD - Halfword integer equivalenced to HEADER (1) in labeled common
/INTTXT/. It is used to contain the record number in inter-
mediate text records.

TSAVE - Array of 80 halfword integers equivalenced to ACTCOM (100). It
is used to contain the characters of a 'text constant'. It is
updated in ACTION.

TXTFLG - Halfword integer in blank common used as a flag to indicate to
TXTOUT whether or not intermediate text is to be generated. If
TXTFLG = 1 generation of intermediate text is inhibited. SUB44
sets TXTFLG. DIAGSM tests TXTFLG when setting the condition
code. TXTFLG = 1 gives a condition code of 12.

TXTRCD - Array of 406 halfwords in labeled common /INTTXT/ used as the
output buffer for intermediate text records.

TYPE - Halfword integer in labeled common /INTTXT/ used to contain the
record type in intermediate text records. TYPE is equivalenced
to HEADER (2).

TYPPT - Halfword integer in labeled common /COMS17/ and /COMS49/. It is
set to the type of name in SYMTAB and is used for processing
internal names within SYMTAB for setting up internal name inter-
mediate text.

UNDFFD - Halfword integer in labeled common /DSCOM/ used by FDXREF and
DIAGSM to indicate the total number of undefined function desig-
nators in a GOAL compile.

UNDFNM - Halfword integer in labeled common /DSCOM/ used by SYMXRF and
DIAGSM to indicate the total number of undefined names in a
GOAL compile.

3-209

UNDFSN - Halfword integer in labeled common /DSCOM/ used by LBLXRF and
DIAGSM to indicate the total number of undefined step numbers
in a GOAL compile.

UNRFNM - Halfword integer in labeled common /DSCOM/ used by DIAGSM and
SYMXRF to indicate the total number of unreferenced names in
a GOAL compile.

UNRFSN - Halfword integer in labeled common /DSCOM/ used by LBLXRF and
DIAGSM to indicate the total number of unreferenced step
numbers in a GOAL compile.

VART - Halfword integer in labeled common /COMS48/. VART divided by
2 is a value representing the type of internal name being
generated as intermediate text.

XRFFLG - Halfword integer in blank common used as a flag to indicate
whether or not the cross-reference table has been built. If
XRFFLG = 0, BLDXRF is called to allocate and initialize the
cross-reference table. This flag is tested by FDXREF, SYMXRF
and LBLXRF.

XX - Halfword integer equivalenced to ACTCOM (1). It is used to
contain the 'overlay' action routine number, (i.e. SUB xx).
It is computed and set in ACTION. If the action is 'resident',
XX is set to zero.

YY - Halfword integer equivalenced to ACTCOM (2). It is used to
contain the 'resident' action number or the option number for
'overlay' action routines. It is computed and set in ACTION.

S- Halfword integer in blank common used as a control word to
contain the value of the current 'action code'. It is set by
PARSER according to the syntax tables. It is used by ACTION
to select the appropriate 'action' routines to process the
GOAL statements.

ZAP - Array of 10 halfwords in labeled common /SUBCOM/ used to
contain hard-coded patches to the syntax table. ZAP can
contain up to 5 two-entry (i.e. 'location, patch') patches.

3-210

APPENDIX A

GOAL CATALOGED PROCEDURES

A INTRODUCTION

Cataloged procedures have been provided for use with the GOAL Compiler/
Translator, Data Bank, and utility programs in order to minimize the
requirement for user preparation of Job Control Language statements.
This Appendix describes those procedures currently implemented in the
GOAL system and gives examples of their use. Additional information
regarding cataloged procedures may be found in the IBM Systems Reference
Library publication, Job Control Language Users Guide, reference number
GC28-6703.

A description of each procedure is given followed by an example of its
use. Listings of the cataloged procedures are also included.

A.1 COMPILER/TRANSLATOR

This section describes the cataloged procedures used for the GOAL Compile
and Translate steps. GOAL compiler revision REV)2 is used in the examples.

GOAL Compiler Step - This step processes the user's GOAL program source
deck. Syntax checks are performed, and the standard GOAL compilation
listings are generated. In addition the 'Intermediate GOAL' data file
is generated. This file is retained for subsequent use in the 'Translator'
step.

A.1.1 GOALC - (GOAL Compiler)

This procedure is used when only the 'GOAL Compiler' step is desired. It
is useful in syntax debugging and/or listing GOAL source programs. The
standard GOAL compilation listings are generated. The 'Intermediate GOAL'
data file and symbol table are generated and are retained at completion
of this step. GOAL source program decks are used as input. The GOAL
compiler, action routines, and syntax table are required for this procedure.

//SAMPLE JOB
// EXEC GOALC,COMP=REV02
//GOALC.SYSIN DD *

....... GOAL PROGRAM DECK

/*

GOALC Example

A-1

A.1.2 GOALCT - (GOAL Compile and Translate)

This procedure is equivalent to GOALC followed by the 'Translation' step.
It is used to produce GOAL interpretive code for interpretive execution.
The interpretive code is contained in a tabular file which is retained at
completion of this procedure. The standard interpretive translator list-
ings may be generated as well as a binary program tape. Interpreter
control cards follow the GOAL source deck.

//SAMPLE JOB
// EXEC GOALCT,COMP=REVO2
//GOALC.SYSIN DD *

....... GOAL PROGRAM DECK

/*
//GOALT.SYSIN DD *

....... TRANSLATOR CONTROL CARDS

/*

GOALCT Example

A.1.3 GOALT - (GOAL Translate)

This procedure may be used when only the 'Translation' step is desired.
It is useful when the 'Intermediate GOAL' data file and symbol table have
been previously generated. The interpretive code binary program tape is
generated and retained at completion of this procedure. This procedure
uses the GOAL translator.

//SAMPLE JOB
// EXEC GOALT,COMP=REVO2
//GOALT.SYSIN DD *

....... TRANSLATOR CONTROL CARDS

/*

GOALT Example

A-2

A.2 DATA BANK

This section describes the cataloged procedures used for data bank main-
tenance. Procedures are provided for initializing, updating, and listing
data banks.

A.2.1 GOALDBI - (GOAL Data Bank Initialization)

Before the data bank files can be loaded with specific data, they must be
created and/or initialized. The process of initializing an existing data
bank can be used to delete the contents of the data bank files and to
restore their status to initial conditions. This procedure uses the GOAL
data bank program DBI.

//SAMPLE JOB
// EXEC GOALDBI,DISP=NEW **CREATE AND INITIALIZE DB**
//STEPI.HARSET DD *
1234567890ABCDEFGHIJKLMNOPORSTUVWXYZ=:;><()'+-*/?#$-&],.

//STEPI.CDNTROL DD *
8000 TYPE-1 CARD: TOTAL # RECORDS AVAILABLE IN DATABANK.

30 TYPE-2 CARD: TOTAL # DATABANKS TO BE ALLOWED.

Example: Create and Initialize Data Bank

I/SAMPLE JOB
// EXEC GOALDBI **INITIALIZE EXISTING DB**
//STEPI.CHARSET DD *
1234567890ABCDEFGHIJKLMNOPQRSTUJVWXYZ=:;><()'+-*/?#$-&,.

//STEPI.CONTROL DD *
8000 TYPE-I CARD: TOTAL # RECORDS AVAILABLE IN DATABANK.

30 TYPE-2 CARD: TOTAL # DATABANKS TO BE ALLOWED.
/*

Example: Initialize Existing Data Bank

A.2.2 GOALDBUP - (GOAL Data Bank Update)

This procedure enables the user to load specific information into the data
bank files. The GOAL compiler, the data bank syntax table, data bank pro-
grams MAINT and DCON, and OS/360 sort-merge program IERRCOO are used by
this procedure. A data bank source deck is used as input.

A-3

//SAMPLE JOB
// EXEC GOALDBUPCOMP=REV02
//GOALC.SYSIN DD *

DATABANK UPDATE INPUT DECK

//STEPL.CHARSET DD
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ=:;><(),+-*/?#$s&I,.

//STEP2.SORTFLD DD
SORT FIELDS=(1,4,BI,A,13,t4BIA,17,64,CHA),SIZE=E1000

GOALDBUP Example

A.2.3 GOALDBL - (GOAL Data Bank List)

This procedure enables the user to obtain a summary listing of the entire
contents of the data bank files. Data bank program SUPERD is called by
GOALDBL.

//SAMPLE JOB
// EXEC GOALDBL

GOALDBL Example

A.3 UTILITIES

This section describes the cataloged procedures used with the GOAL utility
programs. Procedures are provided for syntax table initialization and
generation, error message file generation, GOAL module updates, and link
editing.

A.3.1 Syntax Table Maintenance

A.3.1.1 GOALINTL - (GOAL Syntax Table Initialization)

This procedure initializes the syntax table file. It is run prior to
generating any syntax tables (GOALXGEN), and it is not run again unless it
is desired to return the file to initial conditions. GOALINTL uses OS/360
utility program IEHPROGM. The input is shown in the example. Output is
syntax Table 1 which is used by the program GOALSNTX (cataloged procedure
GOALXGEN) to build the GOAL syntax tables.

A-4

//SAMPLE JOB
// EXEC GDALINTL
//INIT.SYSIN DD *
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ=:;><()'+-*/?#$-& ,.
1 1 9 0 1 0 0 0 0 3 14 5
1 10 9 90 9 8 -1 0 1 0 0 0
1 19 9 0 9 1 5 94 1 31 5 96
1 28 9 9 7 -1 0 2 0 0 0 0
1 37 9 1 51 1 42 -1 0 1 0 0
1 46 9 0 0 3 75 -1 0 1 0 0
1 55 9 0 0 1 75 3 64 9 6 -1
1 64 9 0 1 0 0 0 0 5 98 1
1 73 9 75 -1 0 2 0 0 0 0 9
1 82 8 2 9 3 9 4 9 5 -1
1 90 1 3
2 91 3 END
1 94 1 1
2 95 1 =
1 96 1 1
2 97 1 ;
1 98 1 1
2 99 1 I
3 1

GOALINTL Example

A.3.1.2 GOALXGEN (GOAL Syntax Generator)

This procedure is used to generate syntax tables for use by the GOAL
compiler. The program used is GOAL utility program GOALSNTX. Input
is a syntax table card deck, and output is a GOAL syntax table in the
syntax table file.

//SAMPLE JOB
// EXEC GOALXGEN
//XGEN.SYSIN DD *

....... CONTROL CARD

....... SYNTAX TABLE DECK
/*

GOALXGEN Example

A.3.2 GOALDIAG - (GOAL Diagnostic Messages)

This procedure generates the GOAL error message file. The entire error
message input deck must be included each time GOALDIAG is run. For a list-
ing of current GOAL error messages, refer to Appendix B of Volume II.
GOAL utility program EMSGINIT and OS/360 utility IEHPROGM are called by this
procedure.

A-5

//SAMPLE JOB
// EXEC GOALDIAG

//INIT.SYSIN DD *

*.,..GOAL ERROR MESSAGE DECK

GOALDIAG Example

A.3.3 GOAL Module Updates

A.3.3.1 GOALUPDT - (GOAL Update)

GOAL module updates are accomplished using GOALUPDT except as noted in
A.3.3.2 and A.3.3.3 below. This procedure uses OS/360 utility program
IEBUPDTE, the FORTRAN compiler IEYFORT, and the Linkage-Editor program
IEWL. Both GOAL.SOURCLIB and GOAL.LINKLIB are updated. Procedure
GOALLINK must be run before modules in GOAL.LINKLIB can be executed.

//SAMPLE JOB
EXEC GOALUPDT,NAME=SUB52

//UP.SYSIN DD *

....... IEBUPDTE (OS UTILITY) CONTROL CARDS & UPDATES.......

GOALUPDT Example

A.3.3.2 GOALFTCL - (GOAL FORTRAN Compile and Link)

This procedure uses OS/360 utility IEBUPDTE, the FORTRAN compiler IEYFORT
and the Linkage-Editor program IEWL. Modules updated with this procedure
are:

CRL DBI GOALINIT SUPERD
CRR DCON GOALSNTX
DBD EMSGINIT MAINT

External references are resolved and modules in GOAL.LINKLIB are in
executable form.

A-6

//SAMPLE JOB
// EXEC GOALFTCL,NAME=SUPERD
//UP.SYSIN DD *

....... IEBUPDTE (OS UTILITY) CONTROL CARDS & UPDATES.......

GOALFTCL Example

A.3.3.3 GOALASM - (GOAL Assembler Language Module Update)

This procedure is used to update the assembler language modules RCRETN and
COMPAR. GOALASM uses the OS/360 assembler program IEUASM and the linkage
editor program IEWL.

//SAMPLE JOB
// EXEC GOALASM,NAME=RCRETN

//UP.SYSIN DD *

....... IEBUPDTE (OS UTILITY) CONTROL CARDS & UPDATES.......

/*

GOALASM Example

A.2.3.4 GOALLINK - (GOAL Linkage Editor)

This procedure resolves external references in GOAL.LINKLIB. After running
GOALLINK modules in GOAL.LINKLIB are in executable form.

//SAMPLE JOB
// EXEC GOALLINK,COMP=REV02

GOALLINK Example

A-7

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES

//GOALC EXEC PGM=&COMP
//STEPLIB DD DSN=GOAL.LINKLIBUNIT=2314,VOL=SERGDALOIDISP=SHR
//FTO5FOOL DD DDNAME=SYSIN
//FIO6FOOL DD SYSOUT=A
//FTO8FOOL DD DSN=GOAL.SYNTAX,UNIT=234VOLSER=GOALO1 ,DISP=DLD
//FTO9FOOI. DD DSN=GOAL.EMESSGUNIT=2314,VL=SER=GOALIDI SP=OLD
//FT1OFOOL DD UNIT=2314,SPACE=(TRK1ObvDCB=BLKSIZE=200
//FT11FOOI DD SYSOUT=ADCB=(BLKSIZE=133,RECFM=UA)
//FTI2FOO1 DD SYSOUT=ADCB=(BLKSIZE=133,RECFM=UA)
//FT13FOOL DD UNIT=23l4,SPACE=(TRK,(1,1)),DCB=BLKSIZE=2OO
//FT14FOD1 DO DSN=GOAL.INTERTXT,UNIT=2314,VOL=SER=GOALD1,DISP=OLD,
// DCB=BLKSIZE=200
//FT15F001 DD UNIT=2314SPACE=(TRKdLO0#1)),DCB=BLKSIZE=2OO
//FTI6FOOI DD DSN=GOAL.MACROSUNIT=2314,VOL=SER=GDALD1,DISP=OLD
//FT17FODL DD DSN=GOAL.RPTTBL ,UNIT=2314,VOL=SER=GOALOlDI SP=OLD,
// DCB=BLKSIZE=200
//FT18FOOL DO DSN=GOAL.DATABL, * DATABANK DATASET *

II UNIT=2314vVOL=SER=GOALOL,
/1 DISP=(OLD#KEEP)

//FTI.9FO0l DD DSN=GOAL.DATAD1, * DATABANK DIRECTORY *

/1 UNIT=2314,VOL=SER=GOALOL,
II DISP=(DLD,KEEP)

//FT2LFODL DD DUMMY
//FT22FOOL DD DSN=GDAL. SYMTAB,UNIT=2314,VOL=SER=GDALOLDISP=OLD
//FT23FOOL OD UNIT=23i4,SPACE=(809(2009200))v

1/ DCB=(LRECL=8O,8LKSIZE=80,RECFM=F)

GOAL C

A- 8

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//GOALC EXEC PGM=&COMP
//STEPLIB DD DSN=3DIAL.Ll JKLIBiUJ rT=2314,VaL=SEI =5?O)AL01,DISP=ShiR
//FT05FO'31 DD DDNAML=SYSIA
//FTO6FDD.1 DD S)YSOUT=4
//FTOBF0DI 00 DSPj=GHC'AL. SY'jTAX ,U;JI [=2314,VOL=SEIU$O,(AL0l ,DI SP=UJLD
//FTO9rOOl DD DSN=GlD-jAL.E ESSG,U I T2314,V0L=SER=(;U A LJI,DI SP=3LfD
//FTicFooi DD U'41T=2314,S'A E=(TRK,lO0),DCB3,LKSIZ 200
//FT11FOO1 DD SYSUUJT=A.,D-C1=(BLKS IZE=133, RECFMlUA)
//FTL2F00I DD SYSjUr=ADCIB=(DLKSI ZE=133,RLCFM=UA)
//F113F-001 DD UNIT=2314,SP42Bc=(T4K, (1,)) ,D'BR=3LKSIZE=200
//FTI4F001 DD DS 'I=GOAL. I NTE-4TXT,U,I T=231 4,VPl=SFGDPA L01 , DI SP'LD,
// DC13=BLKSIZE=200
//FTI5F001 DO UNIT=2314,SPAEr.-=TRK,(10,1)),)CriBLlKSIL=2O0
//FTL6FOO1 DD LDSN =GUIAL.v4CO JS,U-NIT=2314,VOL=SL'R=OtALOi ,DISP=I)LD
//FT17FOOl DD DSN=GD-AL.4PTTt-3L,UN! T=?314,V0L=SFR= -;0ALfL1,DISP=OLD,
// DCB=LKSIZL[=200
//FT18FUD1 00 OSN=GU)AL.uArAbl, D~ ATABANK DATASET *

1 UlNlT=2314,V0L=SEA=,UAL01,
/1 DISP=(DLD,KEtP)

//FT19FJXll DD DSN4=G0.\L.l)4AAJ, *DArAB3ANK DIRECTORY '

// JNIT=2314,VOL=St~R'=;UALOI,
// OISP=(LJJLD,KEEP)

//FT21F001 nD DUMMY
//FT22FODI. DD DSN=GOAL.SYMTAB,"41 r=2314,VOL=SEi=CULALOLDISPDOLD
//FT23FOOI DD UN IT=2314,SPACE=(80,(200,200)),

// DCt3(LRECL=8D,IPLKSTLE=H0,RECFM=F)
//GOALr EXEC PGM=XLATOR,CUNDyi=(8,LT)
//STEPLIB DD DSN= uOAL.I.liI(B ,4IT=2314,VDL=SE.- =G ALO1 ,DISP=SHp
//FTO6FOOl DD SYSOUT=A
/ / F TIOF0 0 'DD DSN=GOAL. I>TEL9TXTU'JI T=2314,VDL=SEK=G5)ALOIDISP=OLD
//FT11F001 DD) DSN=GO)AL.SYMTAB,LJNiT=23Ij,V0L= SER=GotAL01,DI SP=OLD
//FT12F0O1 DD UNIT=2314tSPACF=(CYL, 10)
//FTL3FOOI DO U\IT?2314,SPACF=(CYL,1)
//TAPC7 DD) JNIT=(180,,D,-FEfl,L-,tYbzL=(,NL),ISP(Nt,KEEP)
f/TAPE9 DD i-JNIT=(181,,fEF;),LA4BEL=(,NL),DISP=('F-W.,KEEP)
//FTO5F0O1 DO DDNAME=SYSIrN

GOAL CT

//GOALT EXEC PGM=XLATL)R
//STEPLIR DO DSN=GOAL.Ll:,JKLII3,U"I T=2314,VOL=SPR-GOALOI,DISP=SHR
//FTl'CF00l DD OSN=,IIAL. INTC-,)TXT,UNIT=2314,VOL=SE3R=OALO,DISP=]LD
//FT1 IF0OL DD DSNJ=GD'AL.SvM TAP,JuNTT=2314,VOL=SFR-=";oALo1 ,OISP=JLD
//FT 12F03l Do JNIT=2314,SPACi:=(CYL, 10)
//FT13FO1 DO JNT=?314,SPACE=CCYL4l)
//FTO6FOOl DD SYSOLJT=A
//TAPE? OD JNIT=(180,,DEFU-;ULABlL=(,'IL),DISP)=(NEW,KEEP)

//TAPD D JINIT=(I8,L~L-h~L ,N)DSi(EEP
//FTO5F031 DO D[ON~yE=SYS1N

GOALT
A- 9

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

// PROC DISP=OLD
//STEP1 EXEC PGM=DBI **DATABANK INITIAL FORMATTER**
//STEPLIB DD DSN=GOAL.LINKLIBUNIT=2314,VOL=SER=GOALOI,DISP=SHR
//FTO6FOO DD SYSOUT=A

//FTOF001 DO DSN=GOAL.DATABI, **DATABANK DATASET**
// UNIT=2314,VOL=SER=GOALO01
// SPACE=t172,I8000),,CONTIG)*
// DCB=(RECFM=F,LRECL=172,BLKSIZE=7T2)t
// DISP=(&DISPKEEP,DELETE)

//FT1FOO1 DD DSN=GOAL.DATADI, **DATABANK DIRECTORY**
// UNIT=2314,VOL=SER=GOALOI
// SPACE=(1532,(421),,CONTIG),
// DCB=(RECFM=FtLRECL=1532,BLKSIZE=1532),
// DISP=(&DISPKEEP,DELETE)

//FT13F001 DD DSN=GOAL.UTILD, **TEMPORARY DIRECTORY OUTPUT
// UNIT=2314,VOL=SER=GOALO1,
// SPACE=(1532,(421),,CONTIG),
// DCB=(RECFM=F,LRECL=1532,BLKSIZE=1532),
// DISP=(&DISPKEEP,DELETE)
//*
//FTO9F001 DD DDNAME=CHARSET **ALPHA CHARACTER REFERENCE**
//FTO5F001 DD DDNAME=CONTROL

GOALDBI

A-10

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//GOALC EXEC PGM=&COMP
f/STEPL lB DD DSN=GOAL.LINKLIBUNIT=231.4,VOL=SER=GOALOlIDISP=SHR
//FTO5FOO1 DO DDNAME=SYSIN
//FTO6FOO1 DD SYSOUT=A
//FTO8FO1 DO DSN=GOAL.SYNTAXgUNIr=2314,VDL=SER=GOALoIDISP=OLD
//FTO9FOL DO DSN=GOAL.EMESSGUNIT=2314,VOL=SER=GOALOIDISP=OLD
//FTlOFOOI DO UNIT=2314,SPAE=(TRK,1O),DC8=BLKSIZE=200
//FT11FOO1 DD SYSOUT=ADCB=(BLKSIlE=133,RECFM=UA)
//FTL2FOOL DO SYSOUT=AtDCB=(BLKSIZE=133,RECFM=UA)
//FT13FO0l DD UNIT=2314,SPAC-'E=(TRK,(l,1)),DCB=BLKSIZE=200
//FT14FOOI DO DSN=GOAL. INTERTXTUNIT=2314,VOL=SER=GOALOIDISP=DLD,
// DCB=BLKSIZE=200
//FT15FOOI. DD UNIT=2314,SPAZE=(TRK,(1OI)),DCB=BLKSIZE=200
//FT16FOOI. DO DSN=GDAL.MACROS ,LJ'IT=2314, VDL=SER=GDALOI ,DISP=OLD
//FT17FOO1 DO DSN=GOAL.RPITBL,UNI T=2314,VLJL=SER=GOALDI ,DISP=OLD,
// DCB=BLKSIZE=200
//FTI8FOL DO DSN=GOAL.DArABL,

II UNIT=23149VDL=SER=GOAL01,
1/ DISP=(OLD9KEEP)

//FT19FOOL DD DSN=GOAL.DATADI,
1/ UNIT=2314,VOL=SER=GDALOL,
// DISP=(OLD,KEEP)

//FT2OFOOI DO DSN=ECANPUTUNIT=2314,DISP=(NEWPASS),SPACE=(TR,(5,5)),
II DCB=(BLKSIZE=80,LRECL=80,RECFM=F)

//FT21FOOI. DO DUMMY
//FT22FOOI DD DSN=GOAL. SYMTABUNIT=2314,VOL=SER=GOALOIDISP=OLD
//SrEPI EXEC PGM=MAINTvCOND=(4,LT)
//STEPLIB DO DSN=GOAL.LINKLIBU4lr=23I4,VDL=SER=GOAL1DSP=S-R

//FTO6FO0l DO SYSOUT=A

//FT1OFOOI DD DSN=GOAL.DATAB1, **DATABANK DATASET**
II UNIT=2314,V0L=SER=GOALOlq
1/ DISP=(OLD,KEEP)

//FT1IFOOL DO DSN=GUAL.DATADI, **DATABA4JK DIRECTORY**
II UNIT=2314tVOL=SER=G0ALO1,
/1 DISP=(DLDvKEEP)

//FTI2FOOL DO DSN=&&JNSDRt
// UNIT=2314,
1/ SPACE=(TRKv(5v5))v
II DCB=(RECFM=F,LRECL=80,BLKSIZE=8O),
1/ DISP=fNEWPASS)

//FT09FO0l DO DDNAME=CHARSET

//FTO5FOOL DO DSN=&&INPUTOISP=(OLDDELETE)

GOALDB UP
(Continued next page)

A-1l

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//STEP2 EXEC PGM=IERRCOOO, **SORT OF DIRECTORY ENTRIES**
// COND=(4,LT),
// PARM='MSG=AP'
//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=SYSI.SORTLIB,DISP=SHR
//SORTWKO1 DD UNIT=SYSDA,SPACE=(TRK100),,CONTIG)
//SORTWKO2 DD UNIT=SYSDASPACE=(TRK,OO00),,CONTI)
//SORTWKO3 DD UNIT=SYSDASPACE=(TRK,(100),,CJNTIG)
//SORTIN DD DSN=&&UNSORT,
// DCB=(RECFM=FLRECL=80,BLKSIZE=80),
// DISP=(OLDDELETE)
//SORTOUT DD DSN=&&SORTED,
// UNIT=2314,
// SPACE=(TRK,(5,5)),
// DCB=(RECFM=FtLRECL=80,BLKSIZE=80),
// DISP=(NEW,PASS)
//SYSIN DD DDNAME=SORTFLD
//STEP3 EXEC PGM=DCON, **DIRECTORY BUILD MODULE**
II// COND=(4,LT)
//STEPLIB DD DSN=GOAL.LINKLIBUNIT=2314,VOL=SER=GDALDIDISP=SHR
//FTO6FOOI DD SYSOUT=A
//FT10F001 DD DSN=GOAL.DATAB1 **DATABANK DATASET**
// UNIT=23149VDL=SER=GOAL01,
// DISP=(OLD,KEEP)
//FTIFO001 DD DSN=GOAL.DATAD1, **DATABANK DIRECTORY**
// UNIT=2314,VOL=SER=GOALO1
// DISP=(OLDKEEP)
//FT12F00l DD DSN=&&SORTED, **SORTED DIRECTORY ENTRIES**
// DISP=(OLDDELETE)
//FT13F001 DD DSN=GOAL.UTILD, **TEMPORARY DIRECTORY DUTPUT**
// UNIT=2314,VOL=SER=GOALOI0
II// DISP=(OLDKEEP)

GOALDBUP

A-12

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

// EXEC PGM=SUPERD
//STEPLIB DD DSN=GOAL*LINKLIBtUNIT=2314,VOL=SER=GOALODISP=SHR
//FTO6F001 DD SYSOUT=A
//FTO1F001 DD DSN=GOAL.DATABI.
// UNIT=2314,VOL=SER=GOAL1O,
// DISP=(OLD,KEEP)
//FT11F001 DD DSN=GOAL.DATADI,
// UNIT=2314,VOL=SER=GOAL01
// DISP=(OLDKEEP)

GOALDBL

//IEHPROGM EXEC PGM=IEHPROGM
//SYSIN DD DUMMY
//SYSPRINT DO SYSOUT=A
//DD1 DO DSN=GOAL.SYNTAXUNIT=2314,VOL=SER=GOALOLDISP=(OLDDELETE)
//INIT EXEC PGM=GOALINITCOND=EVEN
//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALOIDISP=SHR
//FTOSFO01 DD DDNAME=SYSIN
//FTO6F001 DD SYSOUT=A
//FTO8FO01 DO DSN=GOAL.SYNTAXtUNIT=2314,VOL=SER=GOAL01,
// DISP=fNEWKEEP),SPACE=(CYL,5)

GOALINTL

//XGEN EXEC PGM=GOALSNTX
//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALO1,DISP=SHR
//FT05FOO DD DDNAME=SYSIN
//FTO6F001 DD SYSOUT=A
//FTO8F001 DD DSN=GOAL.SYNTAXUNIT=2314,VOL=SER=GOAL01,DISP=OLD

GOALXGEN

A-13

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//IEHPROGM EXEC PGM=IEHPROGM
//SYSIN DO DUMMY
//SYSPRINT DO SYSOUT=A
//D0l DO DSN=G0AL.EMESSGUNIT=2314,VOL=SER=G0AL01,DISP=(OLDDELETE)
//IN!T EXEC PGM=EMSGINITtCOND=EVEN
//STEPL lB DD DSN=GOAL.LINKLIBUNIT=2314,VOL=SER=GOALO1,DISP=SHR
//FTO5FOO1 DD DDNAME=SYSIN
//FT06FOOl DO SYSOUT=A
//FT09FOl DO DSN=GOAL.EMESSG,UNIT=2314,VOL=SER=GOALOL,

II DISP=(NEWqKEEP)9SPACE=(80, 1000)

GOALDIAG

//UP EXEC PGM=IEBUPDTE,PARM=MOD
//SYSUT DO DSN-GOAL.SURCLIBUNT2314VLSER=GOALOIDISP=SHR
//SYSUT2 DO DSN=GOAL.SOURCLIBUNIT2314VLSER=G0ALOI,DISP=SHR
//SYSPRINT DO SYSOUT=A
I/FORT EXEC PGM=IEYFORTPARM=ISOURCE,NODECKLOADMAP),CONDtL,#LTUP)
I/SYSIN DO DSN=GOAL.SOURCLIB(6NAME),UNIT-2314VOLSER=GOALOLDISP=SHR
//SYSPRINT DO SYSOUT=A
IISYSLIN DO DSN-EL0ADSETDISPZ(NEWPASS),UN1T-2314,

II SPACE=(80,(2009100)),OCB=BLKSIZEz80
I/LINK EXEC PGM=IEWLPARM=(MAPLET,NCAL),COND=(41,LT,FORT),(1,LTUP))
I/SYSLIN DO DSN=&LDSETOISP=(OLD9DELETE)
IISYSLMOD D0 DSNaGOAL.LINKLIB(ENAME)UNIT2314,VOL-SER3GOAL01,DISP-SHR
/ISYSPRINT DO SYSOUT=A
IISYSUTI DO UNIT-2314,SPACE=(1024,(110000O)),DCB2BLKSIZEZ1OZ4

GOALUPDT

//UP EXEC PGM=IEBUPDTE*PARM=MOD
IISYSUT DO DSN-GOAL.SOURCLIBUNIT=2314,VOL=SERuGOALOlDISP=SHR
I/SYSUT2 DO OSN=GOAL.SOURCLIB,UNIT=2314,VOL=SER=GOALOtDI SP=SHR
IISYSPRINT DO SYSOUT=A
I/FORT EXEC PGM=IEYFORTPARM-(SOURCENODECKLOADMAP),COND=(1,LT,UP)
IISYSIN DO DSN=G0AL.SOURCLIB(&NAME),UNIT-2314,VOL=SER=GOALOlDISP=SHR
I/SYSPRINT DO SYSOUT=A
/ISYSLIN DO DSN=ELfADSETDISP=(NEWPASS),UNIT=2314,

// SPACE=(8O,(200,100)),DCB=BLKSIZE=80
//LINK EXEC PGM=IEWLPARM=(MAP,LETLIST) ,COND=((lLTtFORT) ,(1,LTUP))_
I/SYSLIN DO DSN=&LOADSETDISP=t 0LDvDELETE)
IISYSLMOO DD DSN=GOAL.LINKLIB(&NAME),UNIT=2314,VOL=SER=GOALOI,DISP=SHR
I/SYSLIB DO DSN=SYSI.FORTLIBoDISP=SHR

II DO DSN=GOAL. LINKLIB,UNIT=2314, VOL=SER=GOALOI ,OISP=SHR
IISYSPRINT DO SYSOUT=A
/ISYSUTI DO UNIT=2314,SPACE=(1024,(100,100)),DCB=BLKSIZE=1024

GOAL FTC L

A- 14

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//UP EXEC PGM=IEBUPDTEvPARM=MOD
//SYSUT1I DD DSN=GOAL.SOURCLIB,UNIT=2314, VOL=SER=GOALO1 ,DISP=SHR
//SYSUT2 DD DSN=GOAL.SOURCLIBUNIT=2314,VOL=SER=GOALOI ,DI SP=SHR
//SYSPRINT DD SYSOUT=A
//ASM EXEC PGM=IEUASMPARM=(LOADNODECK,LIST),COND=11,LE UP)
//SYSIN DD DSN=GOAL.SOURCLIBIE NAME) ,UNIT=2314,VOL=SER=GOALO1,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSGO DD DSN=&LOADSETDISP=(NEWPASS),UNIT=SYSSQSPACE=(8,(500,

2 0 0))//SYSLIB DD DSN=SYSl.MACLIBtDISP=SHR
//SYSUT1 DD UNIr=(SYSSQvSEP=SYSLIB),SPACE-(1700(500,50))
//SYSUT2 DD UNIT=SYSSQ,SPACE=(1700,(500,50))
//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSLIBSYSUTiSYSUT2)),

// SPACE=(1700,(500,50))
//IKED EXEC PGM=IEWLPARM=(MAPLETNCAL),COND=((1,LE,UP),(1,IEASM))
//SYSLIB DD DSN=SYSI.TELCMLI8,DISP=SHR
//SYSLIN DD DSN=&LOADSETtDISP=(OLD9DELETE)
//SYSLMOD DD DSN=GOAL.LINKLIB(&NAME),UNIT=2314,VOLSERGOALO,DISP.SHR
//SYSPRINT DD SYSOUT=A
//SYSUTI DD UNIT=2314,SPACE=(1024,f100,100))DCBBLKSIZE=1024

GOALASM

//LINK EXEC PGM=IEWLPARM=IMAP,LET,OVLYXCAL,SIZE=412OK,5OK)I
//SYSLIB DD DSN=SYSl.FORTLIB*DISP=SHR
// DD DSN=GOAL.L INKI IBUNIT=2314,VOL=SER=GOALI. ,DISP=SHR
//SYSLIN DO DSN=GOAL.DATA(LINKDATA) ,UNIT=2314,VOL=SER=GOALOIDISP=SHR
//SYSLMOD DD DSN=GOAL.LINKL[B(&COMP) ,UNIT=2314,VOL=SER=GOALOIDISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUTL DD UNIT=2314,SPACE=(10249(100,100)),DCB=BLKSIZE=1024

GOALLINK

A- 15

APPENDIX B

GOAL DIAGNOSTIC MESSAGES

B.1 INTRODUCTION

Two types of diagnostic messages are output by the GOAL compiler - GOAL
system error messages and GOAL compilation error messages. Compilation
error messages indicate errors in the GOAL input source data. The error
conditions are flagged, error messages are printed, and compilation
continues. System errors indicate that the GOAL compiler cannot continue
to process input source data due to internal GOAL system conditions. The
condition code is set to 16 and the JOB step is terminated.

B.2 GOAL SYSTEM ERROR MESSAGES

GOAL system error messages are printed in the following format:

*** TERMINAL ERROR -1 ***

The GOAL system error conditions are:

System
Error Number Description

1 The maximum number of statement pointers in STPTAB has
been exceeded

2 Not Used

3 Overflow of STMTAB has occurred

4 'Computed GO TO' range error in 'Action' routines

5 Overflow of cross-reference table XRFTA8 has occurred

6 Overflow of macro file has occurrea

7 Invalid text length (less than zero or greater than 406)
passed to routine TXTOUT

8 Not Used

9 Not Used

10 Overflow of SYMTAB has occurred.

In addition, data bank maintenance routines YEFIND and SEEKDB use system
error numbers 500 and 501 to indicate logical error conditions internal to
the data bank routines. No user error is indicated in these cases.

B-1

B.3 GOAL COMPILATION ERROR MESSAGES

The following error messages indicate error conditions detected in GOAL
source input data. These errors are flagged in the expanded source listing
and are defined in the GOAL COMPILER DIAGNOSTIC SUMMARY.

100 INVALID ROW DESIGNATOR OR KEYWORD 'ROW' IS MISSING
101 INVALID COLUMN INDEX NAME OR COLUMN INTEGER NUMBER.
102 INVALID ROW INDEX NAME OR ROW INTEGER NUMBER.
103 INVALID LIST INDEX NAME OR LIST INTEGER NUMBER.
104 INVALID REFERENCE OR KEYWORD FOLLOWING KEYWORD 'SEND' OR 'APPLY',.
106 INVALID OR MISSING EXTERNAL DESIGNATOR -FROM-
108 INVALID OR MISSING EXTERNAL DESIGNATOR - TO -
110 INVALID INTERNAL NAME WHICH MUST BE DECLARED AS A STATE VALUE.
112 INVALID INTERNAL NAME OR STATE WHICH MUST BE DECLARED AS STATE VALUES.
114 INVALID INTERNAL NAME WHICH MUST NOT BE DECLARED AS STATE OR TEXT
122 INVALID INTEGER NUMBER OF ENTRIES.
124 INVALID INTERNAL NAME OR STATE
128 INVALID NUMBER NAME.
129 INVALID NUMBER NAME. THIS NAME IS PREVIOUSLY DEFINED.
130 INVALID NUMBER PATTERN OR NUMBER.
131 INVALID NUMERIC VALUE - MUST BE 1-4 DIGITS.
132 INVALID QUANTITY NAME.
133 INVALID QUANTITY NAME. THIS NAME IS PREVIOUSLY DEFINED
134 INVALID QUANTITY VALUE.
136 INVALID STATE NAME.
137 INVALID STATE NAME. THIS NAME IS PREVIOUSLY DEFINED.
138 INVALID STATE VALUE.
140 INVALID TEXT NAME.
141 INVALID TEXT NAME. THIS NAME IS PREVIOUSLY DEFINED.
142 INVALID NUMERIC LIST NAME.
143 INVALID NUMERIC LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
144 INVALID NUMERIC TABLE NAME
145 INVALID NUMERIC TABLE NAME . THIS NAME IS PREVIOUSLY DEFINED.
146 INVALID INTEGER NUMBER OF COLUMNS.
147 INVALID INTEGER NUMBER OF COLUMNS. THE LIMITS ARE 0 THROUGH 45.
148 INVALID INTEGER NUMBER OF ROWS.
149 INVALID INTEGER NUMBER OF ROWS. THE LIMITS ARE I THROUGH 45.
150 INVALID COLUMN NAME.
151 INVALID COLUMN NAME OR KEYWORD 'COLUMN' IS MISSING.
152 INVALID QUANTITY LIST NAME.
153 INVALID QUANTITY LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
154 INVALID QUANTITY TABLE NAME.
155 INVALID QUANTITY TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
156 INVALID STATE LIST NAME.
157 INVALID STATE LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
158 INVALID STATE TABLE NAME.
159 INVALID STATE TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
160 INVALID INTERNAL NAME OR NUMBER PATTERN

b-2

B.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

162 INVALID TEXT LIST NAME.
163 INVALID TEXT LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.
164 INVALID INTEGER NUMBER OF CHARACTERS.
165 INVALID INTEGER NUMBER OF CHARACTERS. THE LIMITS ARE 1 THROUGH 132.
166 INVALID TEXT TABLE NAME.
167 INVALID TEXT TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
168 INVALID DELAY STATEMENT FOLLOWING THE VERB DELAY OR WAIT.
172 INVALID REFERENCE OR KEYWORD FOLLOWING THE VERB ISSUE .
173 INVALID LEAVE STATEMENT - LEAVE CAN ONLY BE USED WITHIN A SUBROUTINE
174 INVALID RESUME STATEMENT.
175 INVALID LEAVE STATEMENT.
176 INVALID PERFORM SUBROUTINE STATEMENT FOLLOWING THE SUBROUTINE NAME.
180 INVALID RECORD DATA STATEMENT FOLLOWING THE KEYWORD DISPLAYPRINT OR RECORD.
182 INVALID STEP NUMBER OR KEYWORD 'ALL' IS MISSING.
184 INVALID TEXT, NAME OR FUNCTION DESIGNATOR FOLLOWING THE VERB REPLACE.
186 INVALID TEXT OR KEYWORD 'ENTRY' IS MISSING FOLLOWING THE VERB REQUEST.
190 INVALID REFERENCE OR KEYWORD 'PRESENT VALUE OF' FOLLOWING THE VERB SET.
195 INVALID WHEN INTERRUPT STATEMENT FOLLOWING THE KEYWORD 'OCCURS'.
200 THE NUMBER OF ENTRIES INITIALIZED EXCEEDS THE NUMBER SPECIFIED.
201 THE NUMBER OF COLUMN TITLES EXCEEDS THE SPECIFIED NUMBER OF COLUMNS.
202 THE NUMBER OF ENTRIES INITIALIZED IS LESS THAN THE NUMBER SPECIFIED.
203 THE NUMBER OF C3LUMN TITLES IS LESS THAN THE SPECIFIED NUMBER OF COLUMNS.
204 THE FUNCTION DESIGNATOR SPECIFIED IS NOT DEFINED IN THE DATA BANK.
206 INVALID ROW FUNCTION DESIGNATOR. IT IS PREVIOUSLY DEFINED IN THIS TABLE.
210 INVALID COLUMN TITLE NAME. THIS NAME IS PREVIOUSLY DEFINED IN THIS TABLE.
212 EXECUTION RATE AS SPECIFIED IS GREATER THAN TEN MINUTES.
214 CONCURRENT STATEMENT DOES NOT HAVE A STEP NUMBER.
216 CORRESPONDENCE IS INVALID (SHOULD BE I TO 1, 1 TO MANY OR MANY = MANY)
218 INVALID NUMERIC FORMULA (UNBALANCED PARENTHESES)
220 INVALID INTERNAL NAME (NOT DECLARED AS NUMERIC OR QUANTITY)
222 INVALID INTERNAL NAME (NOT A SINGLE ELEMENT)
224 INVALID NUMERIC FORMULA (SIZE EXCEEDS COMPILER CAPACITY)
228 FUNCTION DESIGNATOR SPECIFIED IS NOT A SUBROUTINE PARAMETER.
300 INVALID MACRO LABEL- DOES NOT START WITH A LETTER.
301 INVALID MACRO LABEL- LONGER THAN 32 CHARACTERS.
302 INVALID MACRO LABEL- CONTAINS AN ILLEGAL CHARACTER.
303 INVALID MACRO LABEL- MACRO LABEL IS MULTI-DEFINED.
304 INVALID MACRO PARAMETER - DOES NOT START WITH A LETTER.
305 INVALID MACRO PARAMETER - LONGER THAN 32 CHARACTERS.
306 INVALID MACRO PARAMETER - CONTAINS AN ILLEGAL CHARACTER.
307 INVALID MACRO PARAMETER - MACRO PARAMETER IS MULTI-DEFINED.
308 EXPECTED SEMICOLON ';' NOT FOUND AFTER PROCESSING THE 10 MAXIMUM PARAMETERS.
309 EITHER COMMA ',' OR SEMICOLON ';' WAS OMITTED.

8-3

B.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

310 LEFT PARENTHESIS '(' MISSING ON PARAMETER FOLLOWING COMMA.
311 MACRO TO BE EXPANDED AND/OR EXECUTED IS NOT DEFINED.
312 MACRO TO BE EXPANDED AND/OR EXECUTED NEEDS PARAMETERS - NONE WERE SUPPLIED.
313 INVALID SJBSTITUTION PARAMETER - CONTAINS AN ILLEGAL CHARACTER.
314 INVALID SUBSTITUTION PARAMETER - CONTAINS NO CHARACTERS.
315 NUMBER OF PARAMETERS IN STATEMENT AND MACRO ARE NOT THE SAME.
316 NUMBER OF PARAMETERS IN STATEMENT EXCEEDS NUMBER OF PARAMETERS IN MACRO.
317 INVALID SUBSTUTUTION PARAMETER - LONGER THAN 79 CHARACTERS.
318 INVALID MACRO BODY - CONTAINS NO CHARACTERS.
350 INVALID CHARACTER STRING - CONTAINS AN ILLEGAL CHARACTER.
351 INVALID CHARACTER STRING - CONTAINS MORE THAN 32 CHARACTERS.
352 INVALID REPLACEMENT CHARACTER STRING. CONTAINS MORE THAN 80 CHARACTERS.
353 INVALID REPLACEMENT CHARACTER STRING. CONTAINS AN ILLEGAL CHARACTER.
354 REPLACEMENT NAME, CHARACTER STRING OR FUNCTION DESIGNATOR IS MULTI-DEFINE
400 NUMBER OF DATA BANKS IN USE HAS EXCEEDED THE MAXIMUM OF 10.
402 DATA BANK SPECIFIED IS ALREADY IN USE.
406 INVALID DATA BANK NAME. THE DATA BANK NAME IS MULTI-DEFINED.
408 UNABLE TO FREE DATA BANK AS NONE IS BEING USED AT THIS TIME.
410 SPECIFIED DATA BANK NAME DOES NOT EXIST.
412 UNABLE TO FREE DATA BANK AS IT IS NOT IN USE AT THIS TIME.
413 LABEL ERROR - THE STATEMENT FOLLOWING AN UNCONDITIONAL GO TO IS NOT NUMBEI
414 STRUCTURAL ERROR ** PREAMBLE STATEMENT FOUND IN PROCEDURAL BODY. 5
415 SYMBOL TABLE OVERFLOW HAS OCCURRED. A MAXIMUM OF 9999 ENTRIES IS ALLOWED.
800 INVALID ADDRESS - MUST BE 1-4 DIGITS.
802 INVALID COMPARISON TEST.
804 INVALID DATA BANK NAME.
805 INITIALIZATION OF REFERENCED **SUBROUTINE PARAMETER** NAME IS NOT ALLOWED.
806 INVALID OR MISSING EXTERNAL DESIGNATOR.
807 END PROGRAM STATEMENT IS INVALID DURING A SUBROUTINE COMPILATION.
808 INVALID FUNCTION DESIGNATOR.
809 END SUBROUTINE STATEMENT IS INVALID DURING A PROGRAM COMPILATION.
810 INVALID NUMBERNUMBER PATTERN,QUANTITYSTATETEXT OR INTERNAL NAME.
812 INVALID INTEGER NUMBER.
814 INVALID INTERNAL NAME.
816 INVALID OR MISSING REFERENCE FOLLOWING THE COMMA.
826 INVALID NUMERIC FORMULA.
828 INVALID OUTPUT EXCEPTION.
829 INVALID NAME OR FUNCTION DESIGNATOR.
830 INVALID SUBROUTINE PARAMETER (NAME OR FUNCTION DESIGNATOR).
832 INVALID OR MISSING PROGRAM NAME.
834 INVALID QUANTITY DR INTERNAL NAME
836 INVALID REVISION LABEL.
838 INVALID ROW DESIGNATOR.

B-4

b.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

841 INVALID STEP NUMBER. THIS STEP NUMBER IS PREVIOUSLY DEFINED.
842 INVALID STEP NUMBER.
843 INVALID PERFORM PROGRAM OR PERFORM SUBROUTINE STATEMENT.
844 INVALID SUBROUTINE NAME.
845 BEGIN PROGRAM FOUND DURING A PROGRAM COMPILATION.
846 INVALID TABLE NAME.
847 INVALID FORTRAN SUBROUTINE NAME.
848 INVALID TEXT CONSTANT.
849 A TEXT CONSTANT ENTRY EXCEEDED THE MAXIMUM NUMBER OF CHARACTERS SPECIFIED.
850 INVALID TIME VALUE.
852 INVALID FUNCTION DESIGNATOR TYPE IN THE SPECIFY STATEMENT.
853 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A LOAD OR SENSOR ANALOG.
854 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A LOAD OR SENSOR DISCRETE.
855 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A SYSTEM FUNCTION DESIGNATOR.
856 THE NUMBER OF ROW FUNCTION DESIGNATORS EXCEEDS THE NUMBER OF ROWS.
857 THE NUMBER OF ROW FUNCTION DESIGNATORS IS LESS THEN THE NUMBER OF ROWS.
900 KEYWORD NOT FOUND - AND.
901 KEYWORD NOT FOUND - RETURN.
902 KEYWORD NOT FOUND - AND SAVE AS.
903 KEYWORD NOT FOUND - ADDRESS.
904 KEYWORD NOT FOUND - AS.
907 KEYWORD NOT FOUND - READINGS OF.
908 KEYWORD NOT FOUND - CHARACTERS.
909 KEYWORD NOT FOUND - CRT, PRINTER, TAPE, INTERRUPT, OR FLAG.
910 KEYWORD NOT FOUND - DATABANK OR MACRO.
911 KEYWORD NOT FOUND - ANALOG, CLOCK, OR DISCRETE.
912 KEYWORD NOT FOUND - ENTRIES.
913 KEYWORD NOT FOUND - EXCEPTIONS.
914 KEYWORD NOT FOUND - EQUAL TO OR =.
916 KEYWORD NOT FOUND - FROM
918 KEYWORD NOT FOUND - LOAD OR SENSOR OR SYSTEM.
920 KEYWORD NOT FOUND - OCCURS.
922 KEYWORD NOT FOUND - UNTIL.
924 KEYWORD NOT FOUND - PRESENT VALUE OF.
925 KEYWORD NOT FOUND - COLUMNS.
926 KEYWORD NOT FOUND - ROWS AND.
927 KEYWORD NOT FOUND - REVISION.
930 KEYWORD NOT FOUND - SUBROUTINE.
934 KEYWORD NOT FOUND - TIMES.
938 KEYWORD NOT FOUND - TO
939 KEYWORD NOT FOUND - TYPE.
940 KEYWORD NOT FOUND - WITH.
941 KEYWORD NOT FOUND - WITH ENTRIES.

B-b

B.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

944 KEYWORD NOT FOUND - WITH A MAXIMUM OF, EQUAL TO DR =.
945 BEGIN PROGRAM OR BEGIN SUBROUTINE FOUND DURING A SUBROUTINE COMPILATION.

946 KEYWORD NOT FOUND - PERFORM PROGRAM, VERIFY, DISPLAY, PRINT, OR RECORD.

948 KEYWORD NOT FOUND - NUMBER, QUANTITY, STATE OR TEXT.

952 KEYWORD NOT FOUND - PROGRAM OR SUBROUTINE.
954 KEYWORD NOT FOUND - AND INDICATE RESTART LABELS DR SEMICOLON ';'.
986 KEYWORD NOT FOUND - THEN OR COMMA ',' .
987 INVALID PAGE NUMBER FOLLOWING THE WORD PAGE. LIMITS ARE 1-999.
988 INVALID LINE SIZE FOLLOWING PAGE SIZE. LIMITS ARE 80-110.
989 INVALID PAGE SIZE FOLLOWING THE WORD LINE. LIMITS ARE 1-32767.
990 INVALID DATE TEXT CONSTANT FOLLOWING THE WORD DATE. LIMITS ARE 1-8.
991 INVALID TITLE TEXT CONSTANT FOLLOWING THE WORD TITLE. LIMITS ARE 1-100.
992 INVALID SEQUENCE FIELD NUMBER FOLLOWING THE WORD SEQ. LIMITS ARE 0-10.
993 INVALID COMPOUND COMPILER CONTROL CARD.
994 INVALID COMPILER CONTROL CARD.
995 THIS STATEMENT IS NOT RECOGNIZED AS A GOAL STATEMENT
996 EXPECTED DOUBLE DOLLAR SIGN '$$' NOT FOUND
997 END STATEMENT NOT FOUND - SOURCE DECK DEPLETED - COMPILATION TERMINATED.
998 EXPECTED COMMA ',' NOT FOUND.
999 EXPECTED SEMICOLON ';' NOT FOUND.

b-b

