Qup

STr

Ground Operations Aerospace Language

GOAL
Final Report
Volume H
Compiler
. (NASA-CR-136780) GROUND OPERATIONS N74-15888
| AEROSFACE LANGUAGE ({GOAL), VOLUME 2:
 COMPILER Final HReport (Interpaticnal
. Business Machines Corp.) —265 p HC Unclas
. $15,25 o CSCL 098 G3/08 28966
4
f.ffi‘-%’.
e
(/NF
fo
by
Ve
o
.
o, X
‘{Véﬂ -o*';"'e.‘. i
DGR 31 July 1973

Ground Operations Aerospace Language

GOAL
Final Report

Volume ||

Compiler

Contract NAS 10-6900

Approved hy ‘\/

J W. Handley, Managar .

Systems Programming and
Advanced Programs

31 July 1973

TABLE OF CONTENTS

Section Title . Page
1.0 INTRODUCTION=remmem s a e asa e dm e e e e 1-1
2.0 COMPILER SPECIFICATIONS--=wmeraccommm e e va e 2-1

2.1 Syntax Specifications---------comcmcccaaaaao 2-1
2.1.1 Syntax Equation Translation Example--------- 2-7
2.1.2 Parsing Example-------ccmommccmmae - 2-7
2.2 Syntax Processor----------e--mcmmmmemeeaaeo 2-7
2.3 Input Processor--rmecememomemm e 2-12
2.4 Parsing Routines------=-c-ccmmmmmmmcmcea - 2-12
2.4.1 General Purpose Parsing Routines------------ 2-13
2.4, Special Purpose Parsing Routines---------=-- 2-13
2.5 Compiler Diagnostics-------—=---c--emocomun—- 2-13
2.6 Compiler Qutput Reports-----------cocomenno- 2-14
2.6.1 Source Record Listing-------------cmccueun 2-14
2.6.2 Expanded Source Statement Listing----------- 2-14
2.6.3 Internal Name Cross-Reference Listing------- 2-15
2.6.4 Statement Label Cross-Reference Listing----- 2-15
2.6.5 Function Designator Cross-Reference Listing- 2-15
2.6.6 Diagnostic Summary---=-ree-wreceemaencnennan 2-15
2.6.7 Compiler Directives----c-cmccmmemomcaan 2-16
2.7 Intermediate GOAL Data Generator------------ 2-29
3.0 COMPILER SOFTWARE DESCRIPTIONS-----------comemmacra- 3-1
3.1 Syntax Processor---=-seceacccammcan e 3-1
3.1.1 Initialization Section--------—--o--cc—- 3-1
3.1.2 Input Sectionuesm-smcmmm oo 3-2
3.1.3 Parser Section--------=-cmmmmm e o 3-2
3.1.4 Action Routines----=---mmecmcmmcmmmcamnaea 3-3
3.1.5 Subroutines------=-ccmmmmmm o 3-5
3.1.6 Variable Descriptions----==cecmeecccmancnn.a. 3-6
3.1.7 Syntax Table Definition----------cocceeu-- 3-10
3.1.8 Diagnostics--=-=m-mommmom e 3-15
3.2 Compilere—mm o e 3-17
3.2.1 Mainline Programs---==-==cceccmmammconcucan 3-17
3.2.2 SUBXX Action Routines--=--e-ecamccmacocaaao 3-4]
3.2.3 Intermediate Text Output Formats------------ 3-102
3.2.4 Chain Definitions----meecemmcecsmrna e ee 3-178
3.2.5 Common Definitions---=--cceceommocmcmcnna 3-191
APPENDIX A GOAL Cataloged Procedures-------—-cccoeaua-o A-1

APPENDIX B GOAL Diagnostic Messages-=----==~—memmmemue- B-1

Section
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDI X

TABLE OF CONTENTS (Cont)

Title Page
Syntax Equations (Machine\Printout) |

GOAL Mainline Routines (Machine Printout)

GOAL Mainline Auto—Flow (Machine Printout)

GOAL Action Routines (Machine Printout)

GOAL Action Auto-Flow (Machine Printout)

Data Bank Routines {Machine Printout)

Data Bank Auto-Flow {Machine Printout)

Utilities (Machine Printout)

Utilities Auto-Flow (Machine Printout

i

1.0 INTRODUCTION

This volume identifies and describes the principal elements-and functions
of the GOAL Compiler. It is the result of implementation efforts based
on specifications provided by NASA/KSC in publications, TR-1228, Ground
Operations Aerospace Language (GOAL) Textbook, and TR-1213, Groun
Operations Aerospace Language (GOAL) Syntax Diagrams Handbook, both
dated 16 April 1973. _

A general description of the system is presented in Section 2, Compiler
Specifications. This Section provides an overview of the elements that
comprise the GOAL System. It describes the technique used to transcribe
the syntax diagrams into machine processable format for use by the parsing
routines. An explanation of the parsing technique used to process GOAL
source statements is also included. The Compiler diagnostics and the
output reports generated during a GOAL compilation are explained.

A detailed description of the GOAL program package is presented in Section 3,
Compiler Software Descriptions. This Section includes a write-up for each of:
the FORTRAN subprograms. In addition, the formats for the Intermediate Text
and SYMTAB chain definitions are described. The "common" communication cells
required are identified by name, location, and usage.

Appendices are included to provide the user with the cataloged procedures
used to generate/maintain the GOAL System on the IBM S/360-40 computer
system. In addition, listings of the Syntax Table, FORTRAN programs, and
Auto Flow charts are provided. The diagnostic messages which may be en-
cougtered during the compilation of a GOAL Procedure are listed by message
number.

1-1

2.0 COMPILER SPECIFICATIONS

The principal functions of the GOAL Language compiler are:
0 To accept a GOAL program as input on punched cards.
0 To parse GOAL statements according to syntax diagrams.
] To generate diagnostic messages for statement errors.
0 To generate Intermediate GOAL data.

To support these functions the following principal software elements
are provided:

0 Syntax specifications {equations) for GOAL Language.
0 Syntax processor. |

o Compiler input processor.

o Parsing routines.

0 Diagnostics routine.

0 Qutput report generator.

0 Intermediate GOAL data generator.

The relationship between these items is shown in Figure 2-1. They
are described in further detail in the following sections.

2.1 SYNTAX SPECIFICATIONS

The GOAL Language is specified by a set of syntax diagrams which define
all variations of GOAL statements. These diagrams are transcribed into a
modified Backus Naur Form. The syntax of this notation is described,
using syntax diagram format, in Figure 2-2.

Modified BNF statements are processed by the GOAL SYNTAX GENERATION
PROGRAM to generate syntax tables which are subsequently used by the
GOAL compiler to parse GOAL language statements.

The set of statements describing the GOAL syntax are arranged as a group.
The order is not important, however, the last statement must be 'END'.

Each statement may use up to twenty cards. The end of statement is
indicated by the character, ';'.

Each statement, (except 'END'), defines a syntactical element of the GOAL _
LANGUAGE. This element may be referenced by other statements. The symbolic

2-1

name of the syntactical element being defined appears on the left of the
character, '=', in the Modified BNF statement. Each element including the
'ROOT' element must be defined ONCE in the input group. The 'ROOT' element

is the top of the 'syntax tree'. All valid GOAL statement variations can
be derived starting with the 'ROQT' element.

Each definition statement is in either SEQUENTIAL or ALTERNATE form. The
sequential form indicates that all items specified on the right of the
character '=' must be processed or identified to satisfy the definition

of the syntactical element associated with that statement. The alternate
form indicates that any item identified on the right of the character, '=',
will satisfy the definition. In both cases comparison proceeds from left
to right. Items in the alternate form are separated by the character,

'|'. Sequential and alternate forms cannot be mixed in the same statement.

Sequential or alternate items may be of the following types:

1. REFERENCE - In this case the item is the name of a syntactical
element. Its definition must be satisfied for identification
of the item.

2. FIXED TEXT - This item is a quoted string of characters. The
string must be found, in the GOAL statement being parsed, in
the indicated order for identification of the item.

3. ACTION CALL - This item identifies an action routine to be per-
formed at this point in the parse. Examples would be: Flag
statement type, verify labels/symbols, build lists, write out
intermediate data.

4. ERROR CHECK - The parsing algorithm will normally 'back up'
to try alternatives if a definition is not satisfied. If
an error check is processed the parse cannot ‘back up' past
it. The numbered error message is given in this event.

The items, REFERENCE and FIXED TEXT, may be repeated zero to n times in
a GOAL language statement. '

Zero repetition would indicate an optional construction. N repetition is
used to indicate 'feed back' loops.

Replication is indiéated, in Modified BNF, by special characters immediately
following the item to which they apply.

Three types of replication are provided:

SPECIAL CHARACTER DEFINITION
? item may be absent or used once.
*N item may be absent or used N times.
+N item must be used 1 to N times.

N may be a three digit number. If it is exceeded an error message is given.
If it is Zero or not specified no Timit is used, (N is indefinite).

2-2

STANDARD
SOAL REPORT p | REPORTS
LANGUAGE GENERATOR
INPUT
Al - INPUT DIAGNOSTICS SOURCE,
> PROCESSOR | =————epp ROUTINES TABLES,
ERRORS,
XREF, ETC.
T
e _ INTER-
—p : INTERMEDIATE : MEDIATE
ore 4 peCESS e 2 PARSER — GOAL DATA > GOAL TO TRANSLATOR
BANK METHOD SYNTAX GENERATOR DATA
n | TILE TABLES FILE —_—
("\
a SYNTAX SYNTAX '
SYNTAX - ——p | FILE GOAL
[EQUATIONS PROCESSOR COMPILER
SYNTAX COMPILER UP TO 50
DIAGRAMS SUPPORT SYNTAX .
IN MODIFIED - PROGRAM TABLES)
BNF NOTATION

Figure 2-1.

_ N
- - - — - 4 - - -
coAL | I beFINITION T e |

I syntax 1 STATEMENT | ! STATEMENT
L - — - d Lo— — — L — — 1
r— - = -
" ALTERNATE
e r=— —-— -7 . L—e - —
DEFINITION REFERENCE
| STATEMENT F—— v — = |
SEQUENCE
Lo — o Jd
r= = =1 r= " =" rT T T A
i ALTERNATE 1 ENTRY | — ENTRY -y
L — — — 3 L — — _— Lo — —
N
r— = 77 | | l
| sequence | { ENTRY | o
Lo — — T |
T B
i STATEMENT | END ;
e e — -
131
- — - - - -
M REFERENCE | r .
NAME F o< { CHARACTER I ©
L—- — — 1 [SRSUER S

Figure 2-2 (1 of 3)

T T

REFERENCE
L — — _
FIXED
- - = - - TEXT
L - — _ 4
! ENTRY |
- = -4 P Taction !
CALL
Lo _ _ 1
r—- - -7
ERROR
CHECK
L - — - J
- - = T r - — = A r- — -
REFERENCE
| REFERENCE ————1 \ave : | REPLICATOR |-
L _ _ _ 41 Lo~ \\\\‘ Lo - 4 /////

N
—}f;ED-_] o
' t
[TEXT CHARACTER REPLICATOR |
- - _ 4 L o — — - d o _ 1 /////
. 3
- - = -7 1 - - - — 1 ! - = -7
ACTION — ‘ ,
i CALL # NUMBER i REPLICATOR F /
_ - - 3 L — — — 4 S
Fo- = = ‘l, r l
ERROR
I check ! $ i NUMBER
L - — - 4 L

L — = o

+ 2
R | ////F_. ._\\\\\ JL r- - -7
| REPLICATOR \\\\\—_ ® { NUMBER

Figure 2-2 (2 of 3)
-5

- - — A

NUMBER | ANY DIGIT 0...9
- _ 4

R

CHARACTER } ANY VALID GOAL CHARACTER EXCEPT ENDING
DELIMETER WHERE USED

_— - —

N IS A LARGE INTEGER. ITS VALUE IS IMPLEMENTATION DEPENDENT.

Figure 2-2 (3 of 3)

2-b

2.1.1 Syntax Equation Translation Example

To illustrate the technique for translating syntax diagrams to modified
BNF, the BEGIN SUBROUTINE statement, (Figure 2-3), is converted to the
syntax equations, (Figure 2-4).

Note that intermediate syntactical elements are defined to represent
various paths through the syntax diagram. Equations are also provided
to define lower level syntactical elements such as LETTER and NUMERAL.
The value of the replicator, K, is not specified, thus no limit is
imposed during parsing. The action routines, (#101 to #105), perform
the actual compilation process and test for usage errors. The syntax
equations (tables) serve to identify the statement format and cue action
routines according to the structure of the statement.

2.1.2 Parsing Example

The equations shown in Figure 2-4 were processed by the syntax processor
to generate tables which were then used by a 'prototype' parser to process
several variations of the BEGIN SUBRQUTINE statement.

The results of this run are shown in Figure 2-5. This listing is not an
example of compiler output. It is only intended to show the operation
of the parser and the relationship between syntax diagrams and the state-
ment being parsed.

2.2 SYNTAX PROCESSOR

The syntax processor is a stand-alone program which accepts input in the
form of syntax equations, (described in Section 2.1), and converts this to
syntax tables which are stored in the Syntax Table File for subsequent use
by the GOAL compiler parsing routines. This relationship is shown in

Figure 2-1. The syntax File may contain up to fifty different syntax

tables of moderate size. This enables the use of language subsets or exper-
imental versions of a language syntax.

The syntax processor employs a basic parsing routine and a special syntax
table which is generated by the syntax file initialization program. In
general, the initialization program need only be used once. The initial-
ization program also reads in a character set record which is used by the
GOAL compiler to identify all letters, numerals, and symbols used in the
GOAL language. This teéchnique enables functional substitution of one
character for another, {in compiler input), without regeneration of the
GOAL compiler itself.

The operation of the syntax file initialization program and the syntax |
processor is shown in Figure 2-6.

2-7

GOAL SYNTAX DIAGRAM NUMBER 8 BEGIN SUBROUTINE

T BEGIN | I 7 N
| SUBROUTINE}———- BEGIN SUBROUTINE — 4 NAME | (1
L _STATEMENTg Lo_ o W
LDEFINES SUBROUT INE NAME
’ K
ca7 oo + Dp7
\ | PARAMETER
Lo . oM
) ;
" ’
Ag7 BB7
Figure 2-3

2-8

%
* GOAL SYNTAX EQUATION FOR BEGIN SUBROUTINE STATEMENT
*
<

BEGIN SUBRDUTINE STMT> = 'BEGIN SUBROUTINE® #101 $101 <NAME> #102
$102 <AO07> #103 3

<AQT> = <BO7> | <CO7> ;

<BO7> = '3 #104

<CO7> = <PARAMETER> #105 <DO7>* *;*' ;
<DOT> = ',* {PARAMETER> #105 ;

*

* COMMENTS FDOR ACTION AND ERROR ROUTINES

¥ #101- INITIALIZE LIST FLAGS AND COUNTERS FOR BEGIN SUBROUTINE STMT.

*# $101- ERROR - INCORRECT SUBRDUTINE NAME. STOP PARSING WITH $101.

* #102- SAVE THE SUBRDOUTINE NAME.

* $102~- ERROR - INCDORRECT PARAMETER. STOP PARSING WITH $102.

* #103- PARSE IS DOK. PREPARE OUTPUT LIST. RETURN CONTROL TO THE PARSER.
#1064~ SET LIST FLAG TD EMPTY. THERE ARE NO PARAMETERS.

% #105- PUT PARAMETER IN THE LIST. INCREMENT LIST COUNTER.

* THE REPLICATOR FOR REFERENCE DOT 1S K.

*
%
*
*
<

LETTER> =
TAY I 190 | e | tDe ‘ VE? | tFY g G | ch-| vl] gt]
YK | LY | *MY | eNY | osgr] oepr | Qe | SRt | St | Y |
Tty | tye | i | e 1 ty?®] vz
*
*
*
<NAME> =
t{? CLETTER> <NAME 1>*31 *')* ;
<NAME 1> = :
CLETTER> | <NUMERAL> ;
*
*
*
<NUMERAL> = '
g | 1]] i2| I 13 l t 40 | 15 1 (.Y i 170 | '*a1 i 19
* .
*
*
<PARAMETER> =
<NAMES> 3§
END ;

Figure 2-4

2-9

BEGIN SUBROUTINE (4XY} (KSC) 3

ACTION routine 101 called
ERROR number 101 occurred - parse terminated

BEGIN SUBRDUTINE (XY4) (KSC) 3

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 103 called

BEGIN SUBROUTINE (XY4) (KSC)oe(KSCL)slKSC2)

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 705 called
ACTION routine 105 called
ACTION routfne 103 called

BEGIN SUBROUTINE {(XY4) (KSCl,y(KSC1l),{2KSC)

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 105 called
ACTION routine 105 called
ERROR number 102 occurred - parse terminated

BEGIN SUBRODUTINE {(ABC) {DEF) #s$/3} 3

ACTION Poutine 101 called
ACTION routine 102 called
ACTION routine 105 called
ERROR number 102 occurred - parse terminated

BEGIN SUBROUTINE (ABCD) 3

ACTION routine 101 called
ACTION routine 102 called
ACTION routine 104 called
ACTION routine 103 called

NOTE: Six GOAL Begin Subroutine statements were compiled using the syntax
tables derived from the syntax equations. Three of the statements
were determined to contain syntax errors and the appropriate error
numbers were selected for printing on this listing. The three
correct statements compiled and the appropriate action routines
were called for processing elements of the statements.

Figure 2-5
2-10

INITIALIZATION

LISTINGS
SPECIAL :
TABLES
SYNTAX FILE
— p [INITIALIZATION
CHARACTER PROGRAM |
RECORD \
SYNTAX
FILE
SYNTAX / -
EQUATIONS SYNTAX
— PROCESSOR
\ SYNTAX TABLE

LISTINGS

Figure 2-6.

2.3 INPUT PROCESSOR

The Input Processor controls all inputs to the GOAL compiler. These inputs
come from the following sources: '

1. SOURCE DECK - A GOAL program which the user supplies for
the GOAL compiler. '

2. MACRO FILE - A file consisting of macro ‘bodies’'. These
'bodies' are placed in the macro file whenever a macro is
defined. They are retrieved from the file whenever expan-
sion or execution of one is desired. The Input Processor
will determine when records from this file are to be input
to the GOAL Compiler for parsing.

3. SUBROUTINE FILE - A file consisting of copies of subroutines
which were embedded in a GOAL program. The Input Processor
will determine when records from this file are to be input
to the GOAL compiler for parsing.

4. DATA BANK - Copies of macro bodies are contained in the Data
Bank. The Input Processor will determine when macro records
from the Data Bank are to be input to the GOAL compiler for
parsing.

The Input Processor also scans all inputs, when applicable, for abbreviations.
When an abbreviation is found, the proper substitution is made.

If, ét any tfme during a GOAL compilation the source deck is depleted,
prior to encountering an END statement, the Input Processor will log
an error to this effect and terminate the compilation.

2.4 PARSING ROUTINES

The GOAL compiler will utilize a table guided top-down parsing algorithm.
The tables used by the parser are generated as described in Section 3.2.
The parsing routines are of two types:

1. GENERAL PURPOSE - These routines form the basic parser.
They are used by all syntax tables. They perform the input
statement scan according to the top-down technique, flag
unrecognizable constructions, and cue the execution of
action routines according to the structure of the input
statement. '

2. SPECIAL PURPOSE - These are the action routines which provide
processing to support recognition and testing of specific
syntactical elements such as labels, variables, macros, and
subroutines.

2.4.1 General Purpose Parsing Routines

The primary function of these routines is to scan statements in the input
stream and recognize permissible constructions according to the contents

of the syntax tables. The recognition criterion is simple appearance. As
constructions are recognized the parse continues until the entire statement
has been processed. If a construction is not recognized, alternate definitions
are tested. If none is satisfied, the invalid field is marked and a diagnostic
message is given according to the last error checkpoint processed from the
syntax tables. These routines also test maximum repetition counts when
specified in the syntax equations. When a construction is successfully
identified in the input stream these routines may cue the execution of a
special purpose action routine specified in the syntax tables.

2.4.2 Special Purpose Parsing Routines

These are the action routines cued by the general purpose parsing routines.
They may perform any of the following types of functions:

1. Specialized compiler support such as macro definition, macro
expansion, and subroutine processing. :

2. Symbol table operations for definition and reference.

3. Usage validation for any syntactical element of the GOAL
Language.

The special purpose parsing routines may signal a no-compare condition to
the basic parser. In this case alternate definitions will be tested or a
diagnostic message will be given. In this way the special purpose routines
may resolve the difference between syntactical elements which have similar
appearance but different meanings.

2.5 COMPILER DIAGNOSTICS

Two basic typeé of errors are recognized in the input statements to the GOAL
compiler. Thesa are:

1. Syntax errors - The appearance of the statement does not
conform to any permissible variation described in the GOAL
Syntax Diagrams. In this case the parse is terminated
for the current statement.

2. Usage errors - The statement is syntactically correct, however,
some valid construction is incorrectly used. In this case the
parse may continue to process the remainder of the current
statement.

In both cases the statement is flagged in the expanded statement listing,
(see Section 2.6). A mark is placed under the field in which the error
occurred and all relevant data is logged for use in the diagnostic summary
report. : ‘

2.6 COMPILER QUTPUT REPORTS

The following reports will be provided on request, by the GOAL compiler.
1. Source Record Listing

Expanded Source Statement Listing

Internal Name Cross-Reference Listing

. Statement Label Cross-Reference Listing

s e

. Function Designator Cross-Reference Listing

These reports may be requested using compiler directives described in sub-
section 2.6.7. The reports are described in greater detail and examples
are given in the following sub-sections. The examples are intended to
11lustrate the contents and organization of the reports. These reports
are available for the main GOAL program and GOAL subroutines.

2.6.1 Source Record Listing

This report contains a listing of all source records processed by the GOAL
compiler. The records are assigned sequence numbers to facilitate reference
from diagnostic messages. An example of this report is given in Figure 2-7.

2.6.2 Expanded Source Statement Listing

This report contains a listing of all GOAL statements processed by the compiler.
Each statement is assigned a sequence number for reference in other output
reports. This sequence number has a plus '+' sign next to it if the state-
ment was part of a macro body being expanded. When the first valid procedural
statement is encountered, a new page is started and the comment

§ wxwwxrnnns BEGIN OPERATING STEPS kkwdikxs

is printed as the first 1ine of this page. The beginning of a GOAL statement
will start on a new line in this report. If a statement contains an error,
the word ** ERROR ** will be placed in the margin preceding the statement
number and an asterisk (*) will be placed under the field in error. All
abbreviations and replacements will be expanded. Text replacement will be
performed subject to the following rules:

1. If the replacement text field is the same size as the original
text field, a simple substitution is performed.

2. If the replacement text field is smaller than the original text
field, it is inserted left-justified and any remaining original
text is replaced by blanks.

3. If the replacement text field is larger than the original text
field, the statement is expanded in size to provide space for
the replacement text.

2-14

4, A record is not expanded in size if i1t contains blank areas
sufficient to contain replacement text. That is, the position
of non-replacement text is not affected.

5. If an expanded record cannot be printed on a single lihe, addi -
tional line(s) are used to contain the overflow.

The ahove rules were chosen to give the user control of the format of this
report. When the letter 'S' is used to represent a step number instead of
the word 'STEP', this report substitutes the word 'STEP' according to the
rules above. An example of this report is given in Figure 2-8.

2.6.3 Internal Name Cross-Reference Listing

This report gives a 1isting of all internal names defined or referenced in

a GOAL program. The names are listed in alphabetical order. The statement
numbers refer to the sequencing given in the expanded source statement 1ist-
ing. Type and size attributes are given. Undefined and unreferenced names
are flagged. An example of this report is given in Figure 2-9.

2.6.4 Statement Label Cross-Reference Listing

This report gives a listing of all statement labels defined or referenced in

a GOAL program. The labels are listed in ascending sequence. The statement
numbers refer to the sequencing given in the expanded source statement listing.
Undefined and unreferenced statement labels are flagged. An example of this
report is given in Figure 2-10.

2.6.5 Function Designator Cross-Reference Listing

This report produces two listings. The first listing contains all of the
Data Bank names with their revision labels and a ULata Bank reference number.
These are listed in alphabetical order.

The second listing contains all of the Function Designators referenced in a
GOAL program. These are listed in alphabetical order. Relevant information
such as type, address and Data Bank number is listed. The Data Bank number
which is listed corresponds to the Data Bank number in the 1isting of Data
Bank names. This enables the user to identify the name of the Data Bank from
which a given Function Designator was retrieved. Statement numbers refer to
sequencing given in the expanded source statement 1isting. Undefined Function
Designators are flagged. An example of this report is given in Figure 2-11.

2.6.6 Diagnostics Summary

This report gives a 1isfing of all warnings and errors detected in a GOAL
program, The following warnings are generated if they exist:

1. Unreferenced Internal Names

2. Unreferenced Step Numbers

The following errors are generated if they exist:
1. Parsing errors
2. Undefined internal names

Undefined step numbers

Undefined Function Designators

g W

Step numbers referenced on a Disable Statement, but not
defined on a when Interrupt Statement

6. Step numbers referenced on a Release Statement, but not
defined on a Concurrent Statement

Parsing errors are recognized during a GOAL compilation and are flagged
and marked in the expanded source statement listing. A1l other warnings
and errors are determined after the compilation and may not be flagged
in the expanded source statement listing. An example of this report is
given in Figure 2-12.

2.6.7 Compiler Directives

The following GOAL statements are provided to enable the user to control
compiler options. None of these statements is mandatory. They are
individually described in the following sections. The default action is
explained, if applicable, when they are not used. Syntax equations for
these statements are shown in Figure 2-13.

*SEQ n

This statement is used to specify the size of the sequencing field of the
input records.. This field is taken to be the last (n) characters of each
record. The sequencing field is ignored by the GOAL compiler. If this
statement is not used the entire input record is processed. 0O<n<10.

*EDIT ONLY

This statement is used to suppress generation of intermediate GOAL (object)
data. This expedites compilation for the purpose of obtaining listings and
error checks. If this statement is not used the intermediate GOAL data is
generated.

* IST option, option, ...'option :

This statement is used to request generation of specific GOAL output reports.
The options may be:

SOURCE, EXPAND, LABELS, SYMBOLS, FDS, DIAG

These correspond to the reports described earlier in this section. If
the word 1ist appears with no options, then no reports will be generated.
The diagnostic summary will always be generated when errors or warnings
are detected during a compilation. If this statement is not used all of
the above reports will be generated. .

The following compiler directives affect only the format of the expanded
statement listing.

*TITLE (... TEXT CONSTANT ...)

The text constant is printed on the top 1line of each page. If this state-
ment is not used this portion of the top line is left blank. The length of
the text constant must not exceed 100 characters.

*DATE (... TEXT CONSTANT ...) ;

The specified date is printed on the top line of each page. If this state-
ment is not used this field is left blank. The length of the text constant
must not exceed 8 characters.

*LINE a,b

(a) and (b) are integers indicating the number of Tines per page and the
number of characters per line respectively. After printing (a? lines on
a given page, a new page will be started. After filling (b) characters
in a given line, a new line will be started. The value of (a) must be
between 1-32767 and the value of (b) must be between 80 and 110. If this
statement is not given, the value for (a) is taken to be 50 and the value
for (b) is 100. Note that the (b) value only applies when the expanded
statement cannot be printed on a single line.

*AGE n

This statement is used to begin a new page and set the page counter to (n}.
If (n) is not specified the page counter is not affected. The page number
is given on the top line of the listing.

*CONVERT
This statement has two functions:

1. If encountered while the compiler is in normal processing
mode, this statement will cause all short form GOAL state-
ments following it to be expanded to long form GOAL statements.

2. If encountered while the compiler is in the convert and punch
deck mode, this statement will cause the punch deck option to
be terminated and short form conversion will continue.

*CONVERT DECK 3

This statement has two functions:

Note:

1.

If encountered while the compiler is in the convert mode,
this statement will cause a source deck to be punched.

"~ If encountered while the compiler is in normal processing

mode, this statement will cause conversion of short form
to long form to start and also cause a source deck to be
punched.

This statement causes the line size of the expanded source
statement Tisting to be set to 80 if not already there.

This causes the card images being punched to correspond

with the expanded source statement listing. The line size
compiler directive can appear while the compiler is in this
mode, but the line size specified will not take effect until
this mode is terminated. If no line size compiler directives
are encountered while in this mode, then the line size will
be restored to the value it was when the convert deck option
was encountered.

*CONVERT OFF

This statement causes all options of the convert statement to be terminated.
When this statement is encountered, the compiler will return to normal
processing mode.

6L-¢

RECORD

-
= XN - B VUL

12

GOAL COMPILER SOURCE RECORD LISTING

SOURCE RECORD

S 200

S 300

* TITLE (GOAL LISTING EXAMPLE}, DATE {5NDV73) ;
BEGIN PROGRAM (ERROR TEST} REVISION b 3
USE (TERMINALS) ;
BEGIN MACRG XXX {TITLE), INAME), (DATE) ;
DISPLAY TEXT (TITLE) TO <CRTI-0> ;
DISPLAY TEXT (NAME) TO <CRTL-2> ;
DISPLAY TEXT (DATE) TO <CRT1-3> ;
END MACRO
DECLARE NUMBER (NBR)
DECLARE NUMBER (NB1)
G0 TO 5 100 }
WAIT 5 SECS
EXPAND AND EXECUTE XXX 4 (GDAL PROCEDURE)}, (VATC), (5 NOV 1973), i
VERIFY <UNDEFINED FUNCTION DESIGNATOR> IS ON, GO TO § 300 ;
(NBR} = 10 3 -
LET (NBL) = 20 ;
SET (UNDEFINED NAME) FUNCTIONS TO (ON} 3
DISPLAY TEXT (GOAL EXAMPLE) TO <CRT1-0> ;
DISABLE § 300 ; '
DISABLE S 800
RELEASE S 300
RELEASE S 900 ; ,
DSP TXT (REDUNDANT PRESS REG DN COMMAND),
TXT (HAS BEEN 1SSUED), TD <CRT2> ;
BOO WTE 5 SECS 3
¢ CONVERT ;
DSP TXT (PRESENT VALUE OF STAGE INLET PRESS),
TO <CRT2-10> 3
900 OLY 5 SECS 3
* CONVERT OFF ;
END PROGRAM ;

100 ;
10 ;

- Wi we

Figure 2-7.

GOAL Ol

PAGE

1

GOAL LISTING EXAMPLE SNOVT3 GOAL Ol PAGE i

GDAL COMPILER EXPANDED SOURCE STATEMENT LISTING

STMT EXPANDED SOURLCE STATEMENT
1 BEGIN PROGRAM {ERRDR TEST) REVISIDN 1 3
2 USE (TERMINALS) 3§
3 BEGIN MACRD XXX [TITLE), (NAME), [DATE! ;

DISPLAY TEXT &1&EE&E YD <CRT1-0>
DISPLAY TEXT E2LEE TO <CRTL-2> 3
DISPLAY TEXT E3EEL TO <CRT1-3> 3

4 END MACHO ¢
5 DECLARE NUMBER (NBR) = 100 3
& DECLARE NUMBER (NBL) = 10 3

02-¢

Figure 2-8. (1 of 2)

GOAL LISTING EXAMPLE 5NOVT73 GOAL 01 PAGE 2
GOAL COMPILER EXPANDED SOURCE STATEMENT LISTING
STMT EXPANDED SUURCE STATEMENT
$ sexexkesek BEGIN OPERATING STEPS sssuwsusus ;
7 GU TO STEP 100 ;

8 STEP 200 WAIT 5 SELS
9 XXX ,(GOAL PROCEDURE) »UIVATC), (5 NOV 1973}, ;

10+ DISPLAY TEXT {(GOAL PROCEDURE) TO <CRT1-0>
11+ DISPLAY TEXT IVATC) TO <CRT1=2>
12+ DISPLAY TEXT (5 NDV 1973} TO <CRT1-3> 3
** ERRDOR *# 13 VERIFY <UNDEFINED FUNCTION DESIGNATOR> .IS ONM, GO TD S 300 ;
*
*¢ ERROR *% 14 (NBR} = 10 3
- .
5 LET INBL) = 20 ;
*% ERROR *x i6 STEP 300 SET {UNDEFINED NAME) FUNCTIONS TO (ON) 3
*
17 DISPLAY TEXT (GOAL EXAMPLE) TO <CRTL-0> ;
18 DISABLE STEP 300 ;
19 DISABLE STEP 800 ;
20 RELEASE STEP 300 ;
21 RELEASE STEP 900 ;
22 DSP TXT (REDUNDANT PRESS REG ON COMMAND),

TXT {(HAS BEEN ISSUED), TO <CRT2> ;
23 STEP BOO WVE % S€ECS
24 DISPLAY TEXT (PRESENT VALUE DF STAGE INLET PRESS).
T <CRTZ2-10> 3
29 STEP 900 DELAY 5 SECS
26 END PROGRAM 3

1¢-2

Figure 2-8. (2 of 2)

INTERNAL NAME

(NBR)
INB1)
{UNDEFINEDNAME)

oe-2

TYPE

NUMERIC
NUMERIC

INTERNAL NAME CROSS~REFERENCE LISTING
5TZE DEFINED AT REFERENLED AT
00001 0005 ** UNREFERENCED #*%*

ogootl 0006 0015
** UNDEFINED #% Q016

Figure 2-9.

G0AL 01

PAGE

1

LABEL

0100
0200
0300
0BOO
0300

Nnwvwvinon

XA

DEFINED AT

** UNDEF INED #*=*
0008
0016
0023
0025

REFERENCED AT

0007

*% UNREFERENCED **
00ls 0020

Q019

oozl

STATEMENT LABEL CROSS-REFERENCE LISTING

Figure 2-10.

GDAL 01

PAGE

L

GOAL 0} PAGE 1
FUNCTION DESIGNATOR CROSS-REFERENCE LISTING
DATA BANK MNAME DATA BANK REVISION LABEL DATA BANK NUMBER

({TERMINALS) 0001

ye-2

Figure 2-11. (1 of 2)

FUNCTION DESIGNATCR

<CRT1-0>

<CRT1-2>

<CRTL-3>

<CRT2>

CCRTZ-10>
CUNDEFINEDFUNCTIONDESIGNATOR>

Ge-2

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

FUNCTION DESIGNATOR CROSS-REFERENLE LISTING

TYPE

/0
/0
(/0
1/0
1/0

ADDRS

‘00100
00102
00103
00002
00210

DATA BNK

0001
0001
0001
000l
000l

% UNDEFINED *#

Figure 2-11. (2 of 2)

REFERENCED AT

0010 0CL7
0011
aoL2
00622
0024
0013

GJAL 01

PAGE

¥4

GOAL 01

GOAL COMPILER DIAGNDSTIC SUMMARY
WARNINGS.

THE FOLLOWING INTERNAL NAMES WERE UNREFERENCED :
{NBR)

THE FOLLONWING STEP NUMBERS WERE UNREFERENCED :

S 0200
ERRORS.
ERROR STMT STMT SOURCE RECORD
NUMBER HUMBER POSITION NUMBER ERROR DESCRIPTION
806 13 8 14 INVALID OR MISSING EXTERNAL DESIGNATOR.
995 14 1 15 THIS STATEMENT IS NDT RECOGNIZED A5 A GOAL STATEMENT .
g06 16 164 17 INVALID OR MISSING EXTERNAL DESIGNATOR.

97-7

THE FOLLOWING INTERNAL NAMES WERE UNDEFINED :
{UNDEF INEDNAME}
THE FOLLOWING STEP NUMBERS WERE UMDEFINED @
S 0100
THE FDLLOWING FUNCTION DESIGNATDRS WERE UNDEFINED :
CUNDEFINEDFUNCTIDNDESIGNATOHR?>
THE FOLLOWING STEP NUMBERS WERE REFERENCED ON A DISABLE STATEMENT BUT NOT DEFINED DN A WHEN INTERRUPT STATEMENT
S 0300 S 08OO
THE FOLLOWING STEP NUMBERS WERE REFERENCED ON A RELEASE STATEMENT 8UT NOT DEFINED ON A CDNCURRENT STATEMENT :

S 0300 S 0900
END DOF DTAGNOSTICS.

TOTAL NUMBER OF SOURCE RECORDS: 31
TOTAL NUMBER DF STATEMENTS: 26
TOTAL NUMBER DF WARNINGSS 2

TOTAL NUMBER OF ERRORS @ 10
HIGHEST CONDITION CODE wWAS B8

Figure 2-12.

PAGE

1

-
|

Lo

-
|
b

- - — T " r— — — "
COMPILER | * | COMPILER e o s
| DiRecTIVES ' COMMAND -
L - — — -
o T T
. SEQUENCE
' COMMAND |
L. o — ;
- - = |
EDIT ONLY l
" comanp "““‘“‘“}
- — =
* |
% roToT T g
: LIST . i
—— conp
Lo = = '
| r— = - |
| TITLE
4 COMMAND E—
- 7 ‘ b e e
COMPILER
DIRECTIVES , == =1
o i DATE
—————— COMMAND —
: Lo o '
z F—— -
; LINE _
?_—“_’ COMMAND "‘—“—";
: Lo — — 4 ‘
i
| = = =
! PAGE _
=~ COMMAND P
b e o — !
- = T A
CONVERT
COMMAND
b e
- T T r - — = 7
SEQUENCE | SEQ __; INTEGER e _
COMMAND ~ NUMBER y
R o
(o-10>

Figure 2-13 (1 of 2)

2-27

- cman ——

EDIT ONLY

' COWD s e EDIT ONLY — e
e =
»
- SYMBOLS -
| SR i
I SOURCE |
: LIST 1 LIST EXPAND — :
OMMAN — r
L ¢ D | LABELS —i
T DIAG
FDS
_ (99
T l —o
| cclawwqo p— TITLE . (I CHARACTER)
Lo - - = d L - -

(BLANKS ARE SIGNIFICANT)

7
i | ""~-l
| comanp F——— OATE —— (CHARACTER)
d

Lo - - _J b
(BLANKS ARE SIGNIFICANT)

- - = = ———— e - -
LINE ' INTEGER INTEGER
——— LINE L
| COMMAND , — NUMBER ' ’ i NUMBER
Lo o o Lo — - d I
(1-32767) (80-110)
Foo - o=
PAGE . INTEGER
‘ COMMAND b PAGE _\ 1 NUMBER t
Lo e = S T
o N\ C1-999
r-- T T DECK
CONVERT ~ }— . CONVERT £ >
| COMMAND Ny ‘\u__ OFF .—_u/r

Figure 2-13 (2 of 2}
2-24

2.7 INTERMEDIATE GOAL DATA GENERATOR

The intermediate text output from the compiler is a data set which represents,
in tabular fashion, all of the informational content of the GOAL source pro-
gram. This data set is sequentially processable and contains logical records
of varying length. Each logical record consists of a fixed header portion
followed by a varying length data portion. Total record content can be reaa,
written, and processed in a FORTRAN array of the INTEGER type. Each element
of the array is capable of storing a signed number or a single character.

The fixed header portion of each logical record contains the following
information:

° Intermediate Text Record Number - Each output text record is
numbered in an ascending sequence.

Record Type - A single number to indicate the format of the
data portion of the record.

° GOAL Statement Number - If the intermediate text record resulted
from a specific GOAL statement, the sequence number (sequence
number printed on the 1isting by the compiler) is contained in
this field.

° GOAL Statement Label - If the record resulted from a specific
GOAL statement, and that statement was labeled in the source
program, the label (numeric representation) will be contained
in this field.

Record Length - The actual lengtn of this logical record.

Section 3.2.3 illustrates the logical content of the intermediate text data set.

2-29

3.0 COMPILER SOFTWARE DESCRIPTIONS

This section provides a more detailed description of the software_e1emen§s of
the Syntax Processor and the GOAL Compiler which were identified in Section 2.

3.1 SYNTAX PROCESSOR

The following Section is a detailed descirption of the Syntax Generation
program described in Section 2.2.

The principal functions of the Syntax Generation program are:

0 To accept a set of syntax equations as input on
punched cards.

0 To parse these equations according to syntax
diagrams (Figure 2-2).

0 To generate diaghostic messages for equation
errors.

) To generate a syntax table.

To support these functions, the Syntax Generation program contains the
following software elements:

0 Initialization Section
0 Input Section

0 Parser Section

0 Action Routines

o Subroutines

Each individual element of the Syntax Generation program is described
- in Sub-sections 3.1.1 - 3.1.5.

A brief description of all variables used is in Sub-section 3.1.6.

A graphic description of the sytax table generated by the program is
given in Sub-section 3.1.7.

3.71.1 Initialization Section

A1l variables used by the program are declared with their initial
values.

The character table to be used is read into the variable CHRTAB.

3-1

A control card is read which contains the following information:

1. The number of the syntax table to be used'by the program
for parsing.

2. The number to be assigned to the syntax table being
created by the program.

3. A flag which indicates whether or not a trace of the
program's operation is desired.

4. A flag which indicates whether the syntax table being
created is to replace an existing syntax table in the syntax file
or to be added to the syntax file.

The syntax table to be used by the program is read into the variable
STTAB.

3.1.2 Input Section

This Section is repeated each time a statement is completed. Its purpose
is to fill the input buffer with a statement, excluding comment cards. If
the input deck should become exhausted prior to encountering an end state-

ment, a warning message will be printed and an END statement will be
inserted.

3.1.3 Parser Section

This Section of the program functions the same as the Parser for the
GOAL compiler. According to the syntax table being used, it executes
sections of the program which make syntactical analysis of the input
stream. The Parser consists of the following parts:

0 Initialization

0 Entry Pointer Advancement

0 Reference Routine

s Text Routine

0 Subroutine Routine

) Error Checkpoint Routine

) Terminal Routine

3.1.3.1 Initialization. This qart initializes entry into the syntax
table used by the program. It also initializes pointers used by the
other parts in processing the syntax table.

3-2

3.1.3.2 Entry Pointer Advancement. This part advances the initialized
entry pointer to the next entry in the syntax block. A branch is made to
either the reference routine, text routine, subroutine routine, or error
checkpoint routine, according to the type code found in the syntax table.

3.1.3.3 Reference Routine. This part is entered only if the syntax

table contains a reference to another block. It adjusts all of the pointers
and saves 'backup' information in case an error occurs. When all adjustments
have been made it returns to the entry pointer advancement part.

3.1.3.4 Text Routine. This part is entered only if the syntax table
contains a reference to a text constant. This routine determines if the

text in the input stream is the same as the text constant in the syntax
table.

3.1.3.5 Subroutine Routine. This part is entered only if the syntax
table contains a reference to an action routine. This routine will branch
to the specified action routine.

3.1.3.6 Error Checkpoint Routine. This part is entered only if the
syntax table contains a reference to an error checkpoint. This routine
places the error number in the header of the syntax block currently being
processed. If an error is detected after this point, the parse will termi-
nate and the error number will be logged.

3.1.3.7 Terminal Routine. This part is entered after the text routine,
subroutine routine, or error checkpoint routine have finished. This
routine determines if a syntactical error is valid (an alternative exists).
It also determines if parsing should terminate because of an error check-
point or completion of the syntax table for an equation.

3.1.4 Action Routines

The following sub-sections describe the functions of each of the action
routines used by the syntax generator program.

3.1.4.1 Action Routine #1. This routine looks for a name in the input
buffer. If a name 1s found, it is validated and added to the symbol table
if necessary. A return code of 0 is passed back to the Parser to signal
successful completion of this action routine. A return code of -1 is

passed back if this action routine fails to find a name or finds an invalid
name.

Note: This action routine uses a subroutine to add the name to
the symbol table (Sub-section 3.1.5.1).

3-3

3.1.4.2 Action Routine #2. This routine looks for an argument (name to
the right of the equal sign) in the input buffer. If an argument is found,
it is validated and added to the symbol table if necessary. A flag is set
to distinguish this element from the ROOT element. This is done because
this is a reference to an element and the ROOT is not referenced. The type
of argument is stored in the syntax table being built. A return code of 0
is passed back to the Parser. If an invalid argument is detected, a return
code of -1 is passed back to the Parser.

Note: This action routine uses a subroutine to add the argument
to the symbol table (Sub-section 3.1.5.17).

- 3.1.4.3 Action Routine #3. This routine loocks for a text constant in the
input buffer. If a valid text constant is found, it is placed in the text

table and the correct type and location in the text table is placed in the

syntax table being built. A return code of 0 is passed back to the Parser.
If an invalid text constant 1s found, a return code of -1 is passed back to
the Parser.

Note: The text table being built by this routine is added to the
end of the syntax table after the program is completed. All
references to text constants are updated. A1l text constants
in this table are unique. Multiple references to a text
coE?tant do not cause multiple copies to be inserted in the
table.

3.1.4.4 Action Routine #4. This routine looks for action routine refer-
ences in the input buffer. If a valid reference to an action routine is
found, its correct type code and action routine number are placed in the
syntax table being built. A return code of 0 is passed back to the Parser.
If an invalid action routine reference is made, a return code of -1 is
passed back to the Parser.

Note: This routine uses a subroutine to find a valid action
routine number (Sub-section 3.1.5.2).

3.1.4.5 Action Routine #5. This routine looks for error number references
in the input buffer. If a valid reference to an error number is found, the
correct type code and error number are placed in the syntax table being
built. A return code of 0 is passed back to the Parser. If an invalid
reference to an error number is made, a return code of -1 is passed back

to the Parser.

Note: This routine uses a subroutine to find a valid error
number (Sub-section 3.1.5.2).

3.1.4.6 Action Routine #6. This routine sets the second location of
the current header being built to two. This signifies that the syntax
equation being built is an alternative. A return code of 0 is passed

back to the Parser.

3-4

3.1.4.7 Action Routine #7. This routine is entered when a semicolon
is Parsed. 1t places a -1 in the syntax table being built signifying
the end of an equation. This routine also reads another statement into

the input buffer.

3.1.4.8 Action Routine #8. This routine is entered when all syntax
equations being input to the new program have been processed. It resolves
all references in the new syntax table. It writes the symbol table in the
output report, flagging all undefined symbols. It scans the table and
determines which equation is the ROOT equation. It writes the new syntax
table into the syntax file, {f no errors were detected, and terminates the
program,

3.1.5 Subroutines

The following Sub-sections describe the functions of each of the sub-
routines used by the Syntax Generation program.

3.1.5.1 Symbol Table Subroutine. This subroutine maintains the symbol
table used in generating a syntax table. It scans the input buffer search-
ing for a name. When a name is found, it adds it to the symbol table if
it is missing. It adjusts all pointers which relate to the symbol table
and tests for unrecoverable errors, i.e., symbol table overflow, etc.

3.1.5.2 Number Look-Up Subroutine. This routine scans the input buffer
searching for a number. If a valid number is found, an error message is
printed and parsing is terminated.

3.1.5.3 GETCHR. This subroutine reads a character tabie into a buffer
in the calTling program. The character table read is the one used to
generate the syntax table which the program is using. This way the
correct interpretation of codes in the syntax table can be made.

3.1.5.4 GETSTX. This subroutine reads a syntax table into a buffer

in the calling program. The table number, buffer location, buffer size,
ROOT and return code are specified via parameters. The desired table is
loaded if adequate space is available. If space is not available or the
table does not exist, the appropriate return code is passed back to the

calling program. This subroutine also produces a listing of the table.

3.1.5.5 PUTSTX. This subroutine writes a syntax table into the syntax
file from a buffer in the calling program. The syntax table number,
syntax table buffer location, text table buffer location, text table
size, syntax table size, ROOT and return code are specified via para-
meters. The text table is placed at the end of the syntax table and

all text references are updated. This new table (combination syntax

and text table) is written into the syntax file and assigned the number
pagﬁed as a parameter. This subroutine also produces a listing of the
table.

3-5

3.1.6

Variable Descriptions

This section contains a brief description of all variables used in the
syntax generation program.

ALPHA

AND
APFLAG

APOST

BLKHDR

BLNK
CHRTAB

coL
COMMA
DIGIT

DOLLAR

EQ
ERRNO

GET

GT

IK
IM
IN

Array, in CHRTAB - Defines the sections of the character
table consisting of the alphabetic characters.

Integer, in SPCHAR - Defines the special character '&'.
Logical Flag - Used to signal a text constant in the input
buffer. Syntactical processing will continue when this flag
is turned off.

Integer, in SPCHAR - Defines the special character (').
Integer - Index of header of block currently being processed.

Integer, in SPCHAR - Defines the special character ' ' (blank).

Array - Used to contain the character table read during ini-
tialization.

Integer, in SPCHAR - Defines the special character ':'.
Integer, in SPCHAR - Defines the special character ',

Array, in CHRTAB - Defines the section of the character table
consisting of the numeric characters.

Integer, in SPCHAR - Defines the special character '$§'.
Integer, in SPCHAR - Defines the special character '='.

Integer - Contains the error number to be printed in the listing
when an error occurs.

Integer - Contains the number of the syntax table to be used
by the syntax generation program for parsing.

Integer, in SPCHAR - Defines the special character '>'.

Integer - Used as pointer in the input buffer to determine where
the card being input is to be placed.

Integer - Used as multi-purpose counter.
Integer - Used as multi-purpose counter.

Integer - Used as multi-purpose counter.

3-6

INCARD Array - Used as the input buffer.

IN1 Integer - Used as integer value of a number in number look-up
subroutine.

ISN Integer - Used as return variable for computed go to statement
in number look-up subroutine.

ISR Integer - Used as return variable for computed go to statement
in symbol table subroutine.

IS Integer - Used as variable in symbol table subroutine.

152 Integer - Used as variable in symbol table subroutine.

I Integer - Used as multi-purpose variable.

I3 Integer - Used in action routine #3 as a variable.

14 Integer - Used in action routine #4 as a variable.

15 Integer - Used in action routine #5 as a variable.

J Integer - Used as a pointer in STTAB.

JE Integer - Used as return variable for computed go to statement
in action routine #8.

Jd Integer - Used to save value of a pointer for the syntax table.

JJsg Integer - Used as a multi-purpose variable.

J3 Integer - Used in action routine #3 as a variable.

K Integer - Used as pointer in the input buffer.

KK Integer - Used to save the value of K for temporary processing.

KS Integer - Used to save the value of K for temporary processing.

K3 Integer - Used in action routine #3 as a variable.

L Integer - Used as a pointer in STTAB.

LBS Integer, in SPCHAR - Defines the special character '#'.

LPAR Integer, in SPCHAR - Defines the special character '('.

LT Integer, in SPCHAR - Defines the special character '<'.

L3 Integer - Used in action routine #3 as a variable.

3-7

MINUS

NOT
OR
QUTSVE

QUTTAB

PERIOD

PLUS
PUT

QUEST

RC

RCSAVE

REPCNT

ROOT

RPAR

SEMI
SFFLAG

SLASH
SPCHAR

SPLAT

Integer - Used as a pointerin STTAB.
Integer, in SPCHAR - Defines the special character '-'.
Integer - Used as a pointer in STTAB.
Integer, in SPCHAR - Defines the special character '.'.
Integer, in SPCHAR - Defines the special character '|’.

Integer - Used te save the contents of OUTTAB (STMIN) for
temporary processing.

Array - Used to build the new syntax table.
Integer, in SPCHAR - Defines the special character '.'.
Integer, in SPCHAR - Defines the special character '+'.

Integer - Contains the number to be assigned to the new
syntax table when written into the syntax file.

Integer, in SPCHAR - Defines the special character '?'.
Integer - Contains the return code passed from the action
routines to the Parser. Also acts as the return code from
the subroutines which use one.

Integer - Contains the return code which was read off of the
controi card. Given to PUTSTX subroutine.

Integer - Used to count the number of replications of an
argument.

Integer - When used with GETSTX, contains the location of the
syntax table ROOT element. When used with PUTSTX, it tells the
subroutine which element of the new table is the ROOT.

Integer, in SPCHAR - Defines the special character ')'.
Integer, SPCHAR - Defines the special character ';'.

Logical Flag - Used to signal symbol table is full so no more
entries will be allowed.

Integer, in SPCHAR - Defines the special character '/'.

Array, in CHRTAB - Defines the section of the character table
consisting of the special characters.

Integer, in SPCHAR - Defines the special character '*'.

3-8

STMAX

STMIN

STSAVE

STTAB

SUBNUM

SYFLAG

SYMAX

SYMIN
SYMTAB

TABMAX

TRACE

TAMAX

TXMIN

TXSAVE

TXTAB

Integer - Contains the maximum size of the output syntax
table QUTTAB. _

Integer - Contains the current size of the output syntax
table OUTTAB.

Array - Contains the value of STMIN when an alternative
equation is entered. STMIN will be restored to this value
if an invalid alternative is detected.

Array - Contains the syntax table the syntax generation
program uses.

Integer - Contains the integer equivalent of the character
number found in the input buffer by the number Took-up
subroutine.

Logical Flag - Used to signal the output syntax table QUTTAB
is full. No more entries will be allowed.

Integer - Contains the maximum size of the symbol table.
Integer - Contains the current size of the symbol table.

Array - Used as the symbol table. It contains all symbols
used by the program.

Maximum size of the combination syntax and text table to be
read into STTAB by GETSTX.

Integer - Used as a flag to determine if a trace of the
syntax generator program activities is desired.

Integer - Contains the maximum size of the output text
table TXTAB.

Integer - Contains the current size of the output text
table TXTAB.

Array - Contains the value of TXMIN when an alternative
equation is entered. TXMIN will be restored to this value
if an invalid alternative is detected.

Array - Used to build the new text table.

3-9

3.1.7 Syntax Table Definition

The Syntax Table generated by the syntax processor (Figure 3-1) is a
combination of two tables; a Syntax Equation Table (Figure 3-2) and a
Text Table (Figure 3-3)}. .

The Syntax Equation Table (Figure 3-2) is comprised of blocks of half
word integers. Each block contains a header, a variable length 1ist of
sequential or alternative entries, and a uniquely recognizable marker.

The header of each block consists of six half words. The only half word
set when the table is built is the second one (Type of Block). The other
five half words are used when the table is processed.

Each entry following the header is comprised of two half words. The first
half word is the type of entry. The second half word is the corresponding
argument for the type of entry. A description of the different type codes
and their arguments is shown in (Figure 3-4).

The uniquely recognizable marker {-1) is used to terminate the block.

The Text Table (Figure 3-3) is comprised of text constants encountered
during processing. Each entry is variable in length. The first half

word is the Tength of the text constant. The half words following the
length are the text constant.

When a set of syntax equations has been processed, the subroutine PUTSTX
is called. This subroutine will combine the two tables by placing the
Text Table at the end of the Syntax Equation Table and updating all refer-
ences to text constants in the Syntax Equation Table.

3-10

SYNTAX
EQUATION
TABLE

TEXT
TABLE

SYNTAX EQUATION
BLOCK

SYNTAX EQUATION
BLOCK

TEXT
CONSTANT

TEXT
CONSTANT

Figure 3-1. SYNTAX TABLE

N

SYNTAX
TABLE

HEADER

LIST

MARKER

{

Index

J+1

J+2
J+3
J+4

[J+b

J+b
J+7

§

{ J+6+eL

L=(Number of

Return

1

- SEQUENCE

2 - ALTERNATE Type

* Input String Position

* Error Checkpoint

. | Replication Counter

* Current List Index

TYPE CODE Type of Entry
Entry
ARG Entry Argument

L3

Pair of halfwords for
each entry

-1 " End of Halfwords for

Entries in List)

Figure 3-2.

each entry

*Set During
Processing

SYNTAX EQUATION TABLE

ENTRY

ENTRY

ENTRY

'
L
CHAR 1
CHAR L
N
pr—
M
' —~
CHAR 1
CHAR M
e P
— -
N
-
CHAR 1
.
CHAR N
— S
Figure 3-3. TEXT TABLE

CHARACTER COUNT

TEXT CONSTANT

CHARACTER COUNT

TEXT CONSTANT

CHARACTER COUNT

TEXT CONSTANT

TYPE OF
ELEMENT

REFERENCE

TEXT CONSTANT

ACTION ROUTINE
NUMBER

ERROR NUMBER

NOTE -

With N Present-

N is optional.
(1024) + N.

Normal -

ELEMENT

IN

~ SYNTAX EQUATION

. <REF>

. < REF>?

. < REF>+N
< REF>*N

'TEXT'

'TEXT'?
'TEXT 4N
'TEXT "N

#9999
#99997?
#9999+N
#9999*N

$999

TYPE CODE

WP —

o~

ARGUMENT

LOCATION IN SYNTAX
TABLE WHERE
REFERENCED BLOCK
BEGINS.

LOCATION IN SYNTAX
TABLE WHERE LENGTH

OF TEXT CONSTANT IS
LOCATED. TEXT CONSTANT
FOLLOWS LENGTH.

ACTION ROUTINE
NUMBER

ERROR NUMBER

If N is present, the type code is (TYPE CODE) X
This procedure places the TYPE CODE in the upper
half of the HALFWORD and N in the lower half.

HALFWORD

HALFWORD

TYPE CODE
TYPE CODE N
FigUre 3-4. ENTRY TYPE CODES AND ARGUMENTS

3.1.8 Diagnostics

When an error in a syntax equation is encountered during processing, the
syntax table generator outputs a message containing an error number. The
following is a list of these error numbers and a brief description of the

error.

ERROR NUMBER

1

10

ERROR DESCRIPTION

GETSTX routine called and return code received
from routine was not ZERQ.

Statement being processed exceeds 20 cards in
length. 20 cards have been read and no semi-
colon was found.

Syntax table full. An addition to the ocutput
syntax table cannot be made because it would

require altering locations beyond the end of

the table.

I1legal name. Program expected '<' symbol but
some other symbol was found while looking for
name of syntax element.

Multi-defined symbol. Symbol used as name to
define syntax elements has been used previously
to define another block of elements.

Symbol table full. An addition to the symbol
table canot be made because it would require
altering locations beyond the end of the table.

Symbol too long. Symbol being processed has
more than 32 characters (including blanks) be-
tween '<' symbol and '>' symbol.

No characters in symbol. Symbol being processed
has no characters between '<' symbol and '>'
symbol.

Text table full. An addition to the text table
cannot be made because it would reguire altering
locations beyond the end of the tabie.

Null text string. Text string being processed has
no characters (text) between beginning symbol (')
and ending symbol (').

ERROR_NUMBER

11

12

13

14

15

500

ERROR DESCRIPTION

I11egal subroutine number. A number other than
one from 1 through 9999 has been designated as
a subroutine number.

I1legal error (diagnostic) number. A number
other than one from 1 through 999 has been
designated as an error (diagnostic) number.

PUTSTX routine called and return code received
from routine was not zero.

Two roots found. A search through the symbol
table for the root symbol has produced more than
one unreferenced symbol. Therefore, the correct
root symbol cannot be determined.

No root found. A search through the symbol tabie
for the root symbol has produced no unreferenced
symbols, therefore, a root symbol cannot be
determined.

ITlegal statement. The statement being parsed is
not recognized as a syntax equation.

3-1b

3.2 COMPILER
3.2.1 Mainline Programs

The Mainline Programs contained within the compiler are identified and
described in the following pages.

GOAL COMPILER ROUTINE

NAME — ACTERR

FUNCTION - This routine is called if an invalid ACTIQN
ROUTINE number is encountered during parsing.
A message is given and the run terminated.

CALLED BY — ANY ACTION ROUTINE

 SUBROUTINES CALLED — SYSERR, (FORTRAN I/0)

DESCRIPTION - The error message indicates the ACTION ROUTINE
overlay number and action number. RETURN is made
through SYSERR to terminate the run.

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION -

GOAL COMPILER ROUTINE

ACTION

This routine performs 'resident' action functions
and invokes overlay action routines to support
parsing of specific statement types.

PARSER

ACTERR, NEXTCR, ERROR, LOOKUP, TXTOUT, INPUT,
SYSERR, and SUBOT1 ... SUB52

The action routine codes are validated and control
is given to the appropriate routine. Except for
SYSERR and ACTERR, return is always made to the
calling program, (PARSER).

The functions of the 'resident' action routines are
described separately, even though the codes are
physically located in the routine, ACTION.

NAME —

FUNCTION -

CALLED BY —

. SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

BLDXRF

This routine is called once, after all GOAL
statements have been parsed, to prepare for
generation of the cross-reference listings.

LBLXRF, SYMXRF, or FDXREF

SYSERR, (FORTRAN 1/0)

This routine uses the combined areas of the STXTAB
and STMTAB to build XRFTAB which contains a tabula-
tion of all references to symbolic names entered in
SYMTAB. This is done by scanning the XREF file and
logging all statement numbers which reference each
symbolic name. If the size of XRFTAB is exceeded
SYSERR 1is called.

3-20

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION ~

GOAL COMPILER ROUTINE

DIAGSM

This routine is éa11ed to generate the GOAL
diagnostic summary Tisting.

MAIN

RCRETN, (FORTRAN I/0)

The error file and symbol table are scanned
to generate the diagnostic summary report,

If any errors were -detected during the
compilation, the full diagnostic summary

is generated. If no errors were detected,

a small summary message is printed. If any
errors had occurred return is made via RCRETN
to cancel subsequent translation job steps.

3-21

GOAL COMPILER ROUTINE

NAME — ERROR

FUNCTION — This routine is called to lTog errors detected
during compilation in the error file.

CALLED BY — PARSER, any action routine that can detect a
recoverable error.

. SUBROUTINES CALLED — (FORTRAN I/0)

DESCRIPTION — When this routine is called the error count is
incremented by one and a record is written in
the error file. This record contains:

ERROR type

Position in statement
Statement number
Source record number

L Py —

Return is made to the calling program.

3-22

NAME —

FUNCTION —

CALLED BY -

- SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

FDLKUP

This routine verifies function designators used
in the GOAL program. It also verifies that a
macro exists in the Data Bank(s) being used.

Most 'ACTION' routines that process function
designators and SUB21 (Macro Processing Routine)

LOOKUP, YEFIND

When this routine is called the folliowing parameters’
are provided:

1. Function designator name or Macro Label]
Z. Return parms for type, address, 0.K. flag

If the GOAL compiler is in the 'subroutine' mode,

a search is made to check if the function designator
is a parameter. If not, YEFIND is called to search
each data bank currently in use. In all cases, the
function designator type and address are returned to
the calling program. If not found the type is set to
zero. LOOKUP is called to log all function designator
references in the symbol table. If this routine is
used to verify a macro label, then none of the above
actions 1is taken. The macro label is verified and
the proper return code is set.

3-23

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

FDXREF

This routine is called to generate the GOAL
function designator cross-reference Tisting.

MAIN

BLDXRF, (FORTRAN 1/0)

BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned to generate the GOAL
function designator cross-reference listing.
Undefined function designator names are flagged.
A summary of data banks used during the GOAL
compilation is provided. Return is made to the
calling program.

3-24

NAME -

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

FIXUP

This routine is called when the parser encounters
an invalid GOAL statement. Pointers, etc., are
updated to continue compilation.

MAIN

NEXTCR

When this routine is entered the statement buffer
pointer K, is positioned to some unpredictable
character in the current GOAL statement. NEXTCR

is then calied, as many times as required, to
position the pointer past the terminal ';'. The
symbol table is then purged of any erroneous defini-
tions entered in parsing the statement. Return is
always made to the calling program.

3-25

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

GINIT

This routine initializes common data values
and loads the character table, CHRTAB, and
the Syntax table, STXTAB

MAIN

*GETCHR, *GETSTX, SYSERR, (FORTRAN I/0).
(*) - These are part of GINIT

A control card is read which identifies the syntax
table to be loaded. This card may also contain up
to 5 patches to the table. Max limits and initial
values are then set for COMMON DATA. GETCHR is
called to load CHRTAB. GETSTX is called to load
STXTAB. If the requested table cannot be loaded,
SYSERR is called to terminate the run. Data Bank
directories MBLOCK and DBLOCK are then loaded. Any
specified patches to STXTAB are made. GINIT then
returns to the calling program.

3-26

GOAL COMPILER ROUTINE

NAME — EXLIST

FUNCTION — This routine is éaﬂed to write a record in the
GOAL compiler expanded source record listing.

CALLED BY — MAIN

SUBROUTINES CALLED — SYSERR, (FORTRAN I/0)

DESCRIPTION — This routine is called from MAIN for each GOAL
statement processed by the compiler. If the
expanded listing option is not selected no output
is produced. MACRO generated statements are not
listed unless the 'expand' option is specified.
Page and line counts are maintained. Statement
data is contained in the STMTAB portion of the
common DATA area. This data is formatted to
generate the expanded source listing. Error '*'s
are inserted as required. This routine is also
used to write MACRO ‘body' statements into the
MACRO FILE, subroutine records in the subroutine
file, and card images in the source deck output

file. If any of the file maximums are exceeded,
SYSERR is called.

3-27

NAME —~

FUNCTION -

CALLED BY —

SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

INPUT

This routine provides additional data to the
input buffer, STMTAB, each time it is called.
This data may come from either the input
s:ream or MACRO file, Data Bank or Subroutine
file.

MAIN, NEXTCR, RESET, or any action routine
which processes the input stream directly.

SYSERR, SRLIST, LOOKUP, (FORTRAN 1/0).

In normal operation an input record (card) is
read each time this routine is called. In the
MACRO mode this record is obtained from the
MACRO file or Data Bank. In the subroutine
mode this record is obtained from the sub-
routine file. If no data is available ERROR
is called and the run is terminated. SRLIST
is called to list all records read from the
input stream in the normal mode. These records
are then scanned and any abbreviations are
expanded. STMTAB pointers are updated as
required. STMTAB is rolled in and out when
switching modes to avoid loss of data. Normal
returns are made to the calling program.

3-28

GOAL COMPILER ROUTINE

NAME — LBLXRF

FUNCTION — This routine is called to generate the GOAL
statement Label cross-reference listing.

CALLED BY - MAIN

 SUBROUTINES CALLED — BLDXRF, (FORTRAN I/0)

DESCRIPTION — BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned and GOAL statement Label
cross-reference Tisting is generated. Undefined
and unreferenced labels are flagged. Return is
made to the calling program.

3-29

NAME —

FUNCTION —

CALLEDBY —

- SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

LOOKUP

This routine will define and/or verify
symbolic names in the symbol table, SYMTAB.

Most GOAL compiler routines.

SYSERR

Each time this routine is used the calling program
provides the following parameters:

1. Symbolic name

2. Type
3. Option
4, Flag

'Option’ indicates define or verify
‘type' indicates label, symbol, etc. (Chain No.)
‘flag' is set to 0 = 0K, -1 = Not found or duplicate

The symbolic names are stored in a variable length
format. The entries are chained according to type
and entries on each chain are in collating sequence.
SYSERR is called if SYMTAB maximum is exceeded.

3-30

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —~

DESCRIPTION —

GOAL COMPILER ROUTINE

MAIN

Initial entry point of GOAL Compiler. Provides
mainline sequencing of principal compiler functions.
Controls re-initialization and compilation of
embedded subroutines.

Operating System for each GOAL compilation.

SVSAVE, GINIT, INPUT, PREP, PARSER, FIXUP, EXLIST,
RESET, SYMXRF, LBLXRF, FDXREE, DIAGSM, (FORTRAN I/0).

Common data areas and direct access I/0 files are
defined. Data initialization is performed and the
INPUT Buffer is primed. Stmt No. 10 is the start
of the Toop used to process each GOAL statement.
If the statement is a comment it is listed on a
separate 1ine. The PARSER is called to process
each GOAL statement at Stmt No. 40, If RC is set
Non-Zero by Parser, FIXUP is called to find ';'.
EXLIST is then called to Tist statement. If ENDFLG
is set, the loop is finished and summary listings
are generated at Stmt No. 60, The symbol table is
written out to the symbol table file for use by
the Translator. If ENDFLG is not set, RESET is
called to update pointers in the INPUT Buffer

and the loop is continued at Stmt No. 10. DIAGSM
is always callied before exit from MAIN.

MAIN also controls looping for embedded subroutine
processing. If any subroutines were embedded in

a GOAL program, the compiler is executed again to
compile these separately.

3-31

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED ~

DESCRIPTION —

GOAL COMPILER ROUTINE

NEXTCR

This routine scans the input buffer to find
the next significant character. Blanks and
comments are ignored.

Most of the 'ACTION' routines that process
GOAL statements or elements.

INPUT

Each time this routine is called the input buffer
is scanned for a significant character. The
pointer, K, is advanced accordingly. Blanks and
comments are ignored. If K is advanced past the
currently loaded portion of STMTAB, INPUT is called
to obtain additional data.

3-32

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION —~

GOAL COMPILER ROUTINE

PARSER

This routine controls the parsing of GOAL
statements according to the SYNTAX table,
STXTAB.

MAIN

INPUT, ACTION, NEXTCR, ERROR

When this routine is entered, K points to the
expected beginning of each GOAL statement. The
statement is then analyzed according to the syntax
rules contained in STXTAB. INPUT is called to
provide additional data when the SCAN exceeds the
currently loaded portion of STMTAB. ACTION is
called as required according to STXTAB. If the
parse fails, ERROR is called to log the diagnostic
message. NEXTCR is called prior to this to position
the error pointer. RC is set to: 0 = Good Stmt,
-1 = error. Return is then made to the calling
progranm,

3-33

NAME —

FUNCTICN —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

PREP

This routine initializes the input buffer
before parsing each statement.

MAIN

NEXTCR, SYSERR

The input buffer pointer, K, is set to 1.
NEXTCR is then called to find the first
significant position in the statement. This
index is saved as STMTK. If a comment precedes
this position in the record a new block is
created for it so that it will be printed on a
separate line in the expanded listing. If the
block count maximum is thus exceeded, SYSERR is
called to terminate the run. Otherwise return
is made to the calling program.

3-34

- GOAL COMPILER ROUTINE

NAME — RCRETN

FUNCTION — This routine is called to return control to the
operating system.

CALLED BY — DIAGSM » SYSERR

SUBROUTINES CALLED — {None)

DESCRIPTION — This routine returns con;rq] to the opera?ing
system along with a condition code whicn is
obtained as a parameter from the routine calling
RCRETN. This parameter is used to cancel the
execution of subsequent GOAL TRANSLATOR job steps.

3-35

NAME -

FUNCTION -~

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION -

GOAL COMPILER ROUTINE

RESET

This routine is called after each GOAL statement
has been listed to delete it from the input
statement buffer

MAIN

INPUT

The contents of the statement buffer following the
terminal ';' of the current statement are examined.
If these are blank the pointers are set to initial
positions and INPUT is called to prime the buffer.
Otherwise, the remaining contents are moved up in
the statement buffer and the buffer pointers are
adjusted for this data. Return is always made to
the calling program.

3-36

NAME —

FUNCTION —

CALLED BY -

SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

SRLIST

This routine is called to write a record in the
GOAL source listing file.

INPUT

(FORTRAN 1/0)

This routine is called by INPUT each time a record

is read from the compiler input stream. The

contents of this record are stored in the common

data area. This routine formats this data to generate
the GOAL compiler source record listing. Page and
line counts are maintained. The source record data

is not changed in any way. The SRFLG control word is
tested before each output record is written. If this
compiler option is not selected no action is taken.
Return is always made to the calling program.

3-37

NAME —

FUNCTION -

CALLED BY -

. SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SYMXRF

This routine is called to generate the GOAL
Internal name cross-reference listing

MAIN

BLDXRF, (FORTRAN I/0)

BLDXRF is called, if required, to build XRFTAB.
XRFTAB is then scanned to generate the GOAL
internal name cross-reference listing. Undefined
and unreferenced names are flagged. Return is
made to the calling program.

3-38

GOAL COMPILER ROUTINE

NAME — SYSERR

FUNCTION - This routine is called to terminate the

compilation in the event of a 'system' type
error condition.

CALLED BY - Any GOAL routine

SUBROUTINES CALLED — RCRETN, (FORTRAN 1/0)

DESCRIPTION — An error message is given to indicate the error
type which is passed as a parameter from the
routine calling SYSERR. Return is made via
RCRETN to cancel subsequent TRANSLATOR job steps.

3-39

NAME -

FUNCTION —

CALLED BY —

. SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

TXTOUT

This routine is used to write a record in the
GOAL compiler Intermediate Text output file.

A1l action routines that genekate intermediate
text.

SYSERR

The Intermediate Text buffer is contained in a common
data area. A word count is also provided. When this
routine is called a variablie length record is written
in the output file. If the word count is not
O<counts406 SYSERR is called to terminate the run.

Each record contains a standard 6 word header. This

header contains a record count which is incremented
each time a record is written.

3-40

3.2.2

Table 3-2 is a Tisting of the Action Routines used-in the compiler.

SUBXX Action Routines

Defin-

itive information relating to these routines is provided by the ensuing

pages.

SUBO1
SuB02
SUBO3
SuBo4
SUB05

SUBO6 -

SUBO7?
SUBOS
SUBO9
SUB10
SuB11
SuBiz
SUB13
SUB14
SUB15
SuB16
SUBTI7
SUB18
SUB1¢
SUB20
SuB21
suB22
SUB23
SuB24
SUB25
SuBzZe
SUB27
SuBzs8
SUB29
SUB30
SUB3]
SuB3]
SUB33
SuB34
SUB35

Table 3-2

Subroutine Listing

ACTIVATE TABLE
APPLY ANALOG
ASSIGN
DECLARE TEXT TABLE
BEGIN MACRO
BEGIN PROGRAM
BEGIN SUBROUTINE
CONCURRENT
DECLARE DATA
DECLARE NUMERIC LIST
DECLARE NUMERIC TABLE
DECLARE QUANTITY LIST
DECLARE QUANTITY TABLE
DECLARE STATE LIST
DECLARE STATE TABLE
DECLARE TEXT LIST
EXTERNAL DESIGNATOR
DELAY
DISABLE INTERRUPT
END
EXPAND/EXECUTE MACRO
FREE DATA BANK
Gp TP
INHIBIT TABLE
ISSUE DIGITAL PATTERN
LEAVE
LET EQUAL

NOT USED

PERFORM PROGRAM/SUBROUTINE

READ

AVERAGE

RECORD DATA
RELEASE CONCURRENT
REPEAT

REPLACE

3-41

SuB36
suB37
SUB38
SUB39
SUB40
SUB4i
SuB42
SuB43
SUB44
SUB45
SuB4e
Sus47
SUB48
SUB4S
SUB50
SUB51
SuB52

Table 3-2
(Continued)

REQUEST KEYBOARD
RESUME
SET DISCRETE

NOT USED
STOP
TERMINATE
USE DATA BANK
<FD> CHAIN GENERATOQR
COMPILER DIRECTIVES
WHEN INTERRUPT

NOT USED

NOT USED
PREFIX PROCESSOR
INTERNAL NAME .

NOT USED
SHORT FORM PROCESSOR

DATA BANK PROCESSOR

3-42

NAME -

FUNCTION —

CALLEDBY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUBO1

This routine supports compilation of the

"ACTIVATE TABLE' statement.

ACTION

ACTERR, LOOKUP, TXTOUT, FDLKUP

Options '1...7 supported.

#101 - No Action

#102 - Verify, save table name

#103 - No Action

#104 - Write type 30 TXT record

#105 - Verify, index name, write type 31
TXT record

#106 - Verify row No., write type 31 TXT
record

#107 - Verify F. D.,write type 31 TXT

3-43

GOAL COMPILER ROUTINE

NAME — SUBO2

FUNCTION — This routine supports compilation of the
'APPLY ANALOG' statement.

CALLED BY — ACTION

- SUBROUTINES CALLED — ACTERR, TXTOUT

DESCRIPTION — Options 1...8 supported.
#201 - Set INNMCT = 0

#202 - Save lIst External Designator

(Present Value)

#203 - Save 2nd External Designator
(Present Value)

#204 - Write type 4 TXT record

#205 - Verify, save internal name

#206 - Verify, save External Designator

#207 - Write type 42, 43 TXT record

#208 - Write type 43 TXT record

3-44

GOAL COMPILER ROUTINE

NAME — ‘
SUBO3

FUNCTION — This routine supports compilation of the
‘ASSIGN' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOQUT

DESCRIPTION — Options 1...5 supported.
#301 - No Action
#302 - Verify, save internal name (Ist)

#303 - Write type 38 TXT record
#304 - Verify, save internal name (2nd)
#305 - Save 'STATE®

3-45

GOAL COMPILER ROUTINE

NAME — SUBO4

FUNCTION — This routine supports compilation of the
‘DECLARE TEXT TABLE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT, LOOKUP, FDLKUP, (FORTRAN 1/0)

DESCRIPTION ~ Options 1...11 Supported.
#401
#402

Initialize flags, counters, and pointers

Write type 62, 63 TXT records

#1403 - Verify/Save Table Name

#404 - Verify/Save number of rows integer

#405 - Verify/Save number of columns integer

#406 - Verify/Save column names

#407 - Verify/Save row Function Designators

#408 - Verify entries per row does not exceed
the number of columns

#409 - Verify/Save text constants

#410 - Save maximum number of characters integer

#4171 - Verify entries per row is not less than

the number of columns
3-46

GOAL COMPILER ROUTINE

NAME — SUBOS

FUNCTION — This routine supports compilation of the
'"BEGIN MACRO' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, NEXTCR, LOOKUP, FORTRAN I1/0, INPUT,
' ERROR

DESCRIPTION — Options 1...3 supported.
#5071 - Set MACFLG =2, verify, save macro
name, parameters
#502 - Process macro definition
#5603 - SetMACFLG = 0, return to normal

parsing procedure

3-47

NAME —

FUNCTION —

CALLED BY -

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUBO&

This routine supports compilation of the

'BEGIN PROGRAM' statement.

ACTION

ACTERR, TXTOUT

Options'1...4 supported

#601 - Reset compiler pointers

#602 - Save program name

#603 - Save program revision label
#604 - Write type 28 TXT record, then

type 6 for ON, OFF constants and
type 18 for DISPLAY, PRINT, RECORD

Function Designators

3-48

NAME —

FUNCTION —~

CALLED BY -~

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUBG?

This routine supports compilation of the

'"BEGIN SUBROUTINE' statement.

ACTION

ACTERR, LOOKUP, TXTOUT, NEXTCR

Options 1...14 supported

#701 - Reset compiler pointers

#702 - Save subroutine name

#703 - Verify, save 'NAME' parameter

#704 - Write type 61 TXT record then type 6
for ON, OFF constants then type 18 for
PRINT, DISPLAY, RECORD Function Designators.

#705 - Count, save parameters

#706 - Verify, save F.D. parameter

#707 - Verify, save F.D.

#708...#711 - Save STYPE

#712 - Find';*

#713 - Check for No procedural statements

#714 - Set STYPE = 5
3-49

GOAL COMPILER ROUTINE

NAME — SUBQ8

FUNCTION — This routine supfaorts compilation of the
"CONCURRENT' statement.

CALLED BY — - ACTION

SUBROUTINES CALLED — ACTERR, TXTQJT

DESCRIPTION — Option 1 supported
#3801 - Write type 36 TXT records

3-50

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED ~

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB09

This routine supports compilation of the

'DECLARE DATA' statement.

ACTION

ACTERR, TXTQUT, LOOKUP

Options 1...20 supported.

#901 - TD =0

#902, #903 - No Action

#904 - Verify, save NAME {DECLARE NUMBER)

#905 - Write type 2 TXT record (DECLARE NUMBER)
#906 - Set flag for initial values list

#9307 - No Action

#908 - Verify, save NAME (DECLARE QUALITY)

#909 - Write type 3 TXT record (DECLARE QUANTITY)
#910 - Set flag for initial values Tist

#911 - No Action

#912 - Verify, save NAME (DECLARE STATE)

3-51

NAME —

FUNCTION -

CALLED BY —

SUBROUTINES CALLED ~

DESCRIPTION —

GOAL COMPILER ROUTINE

SURD9 (continued)

#913
#914
#3915
#9216
#917
#918
#919
#920

Write type 6 TXT record (DECLARE STATE)

Set flag for initial values list

No Action

Verify, save NAME (DECLARE TEXT)

Write type 7 or 8 TXT record (DECLARE TEXT)
Move Number, set length

Check for subroutine parameter

Set flag for initial values list

3-52

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED -

DESCRIPTION --

GOAL COMPILER ROUTINE

SUB1Q

This routine supports compilation of the

'"DECLARE NUMERIC LIST' statement.

ACTION

ACTERR,

Options
#1001

#1002

#1003
#1004

#1005

#1006

#1007
#1008

LOOKUP, TXTOUT

1...8 supported.

Initialize counters

Verify, save list name

Verify No. of entries

Write type 9 TXT record

Verify, save initialization list
Verify, save initialization list
No Action

Count initialization entries, commas

3-53

GOAL COMPILER ROUTINE

NAME ~ SuB11

FUNCTION — This routine supports compilation of the
'DECLARE NUMERIC TABLE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, LOOKUP, FDLKUP, TXTOUT

DESCRIPTION — Options 1...10 supported.
#1101 - Initialize counters
#1102 - Verify, save table name
#1103 - Verify, save No. columns
#1104 - Verify, save No. rows
#1105 - INVALID (ACTERR)
#1106 - Verify F.D., write type 19 TXT record
#1107 - Write type 17, 18, or 19 TXT records
#1108 - Process column titles
#1109 - Check comma count

#1110 - Save initialization value

3-54

GOAL COMPILER ROUTINE

NAME — suBl12

FUNCTION — This routine supports compilation of the
‘DECLARE QUANTITY LIST' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, LOOKUP, TXTOUT

DESCRIPTION — Options 1...7 supported.
#1201 - Initialize flags/pointers
#1202 - Yerify, save LIST name
#1203 - Check, save No. of entries
#1204 - Write type 11, 12 TXT record
#1205 - Save initialization data
#1206 - Count entries

#1207 - Initialize list entry

3-55

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SuB13

This routine supports compilation of the

'DECLARE QUANTITY TABLE' statement.

ACTION

ACTERR, LOOKUP, FDLKUP, TXTOUT

Options 1...10 supported.

#1301 -~ Initialize flags and counters
#1302 - Verify, save table name

#1303 - Verify, save No. columns

#1304 - Verify, save No. rows

#1305 - INVALID (ACTERR)

#1306 - Verify row function designator
#1307 - Write type 17 TXT record

#1308 - Verify, save column titles

#1309 - Verify, save initialization values
#1310 - Verify No. of entries

3-56

GOAL COMPILER ROUTINE

NAME - SuB14

FUNCTION - This routine supports compilation of the
'"DECLARE STATE LIST' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, LQOKUP, TXTOUT

DESCRIPTION — Options 1...8 supported.
#1401 - Initialize flags, counters
#1402 - Verify, save list NAME
#1403 - VYerify, save No. of entries
#1404 - No Action
#1405 - Save initialization values
#1406 - Write type 13, 14 record
#1407 - Count entries in list
#1408 - Verify list length

3-57

NAME —

FUNCTION —

CALLED BY -

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB1S

This routine supports compilation of the

"DECLARE STATE TABLE' statement.

ACTION

ACTERR, LOOKUP, FDLKUP, TXTOUT

Options 1...10 supported.

#1501 - Initialize flags, counters

#1502 - Verify, save table name

#1503 - Verify, save No. columns in table
#1504 - Verify, save No. rows in table

#1505 -~ INVALID (ACTERR)

#1506 - Verify, save Row Function Desighator
#1507 - Write type 22, 23, 18 TXT records
#1508 - Verify, save column NAMES

#1509 - Save initialization states

#1510 - Verify No. entries in table

3-58

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION -

GOAL COMPILER ROUTINE

SUB16

This routine supports compilation of the

"DECLARE TEXT LIST' statement.

ACTION

ACTERR,

Options
#1601
#1602

#1603

#1604
#1605

#1606
#1607

i

#1608

LOOKUP, TXTOUT, (FORTRAN 1/0)

1...8 supported.

Initialize flags and counters
Verify/save List name

Verify/save No. entries in list
Write type 15, 16 TXT records

Save initialization data

Verify size of Inftialization data
Count entries in list

Verify No. entries in 1ist

3-59

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB17

This routine supports compilation of

'"EXTERNAL DESIGNATOR'.

ACTION

ACTERR, FDLKUP, TXTQUT, LOOKUP

Options 1...5 supported.

#1701 - Initialize flags and counters

#1702 - Verify, save 1st function designator

#1703 - Verify, save remaining function designators
#1704 - Write type 18 TXT record

#1705 - Verify 'TABLENAME FUNCTIONS', save

3-60

GOAL COMPILER ROUTINE

NAME — SUB18

FUNCTION — This routine supports compilation of the
'DELAY' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT

DESCRIPTION — Options 1...6 supported.
#1801 - Initialize flags and counters
#1802 - Write type 53 TXT record
#1803 ~ Save 'TIME' value
#1804 - Provide for 'COMPARISON TEST'
#1805 - No Action
#1806 ~ Initialize flags for comparison test

3-o0l

GOAL COMPILER ROUTINE

NAME — SUB19

FUNCTION — This routine supports compilation of the
'DISABLE INTERRUPT' statement.

CALLED BY ~ ACTION

SUBROUTINES CALLED — ACTERR, LOOKUP, TXTOUT

DESCRIPTION — Options 1...4 supported.
#1901 - Initialize flags
#1902 - No Action
#1903 - Save disable step number
#1904 - Urite type 64 TXT records

3-62

GOAL COMPILER ROUTINE

NAME — SuB20

FUNCTION — This routine supports compilation of the
'END' statement. {Program and subroutine

only.)

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT, (FORTRAN I/0)

DESCRIPTION — Options 1...6 supported.
#2001 - No Action
#2002 - No Action
#2003 - No Action
#2004 - Write type 29 TXT record

- Close file #17

- Set end flag
#2005
#2006

Same as #2004 for subroutines

No Action

3-63

NAME -

FUNCTION —

CALLED BY —

SUBROUTINES CALLED ~

DESCRIPTION —

GOAL COMPI LER ROUTINE

suB21

This routine supports compilation of the

*EXPAND MACRO' statement.

ACTION

ACTERR, HEXTCR, LOOKUP, INPUT, SYSERR,
(FORTRAN I/0), RESET, ERROR

Options 1...4 supported.

#2101 - Process 'BEGIN MACRO' statement
#2102 ~ Set 'EXPAND ONLY FLAG'

#2103 - Set 'EXECUTE ONLY FLAG'

#2104 - Perform MACRO parameter substitutions

3-o04 ’ 2/
v

NAME —

FUNCTION —

CALLEDBY -

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

sSuB2z2

This routine supports compilation of the

'FREE DATA BANK' statement.

ACTION

ACTERR, LOOKUP

Options 1...4 supported.

#2201 - Initialize flags and counters

#2202 - Save 'DATA BANK NAME'

#2203 - Verify 'DATA BANK NAME' and Revision
Label, delete from use list

#2204 - Save Revision Label

3-65

GOAL COMPILER ROUTINE

NAME — SUB23

FUNCTION — This routine supports compilation of the
'G0 TO' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, LOOKUP, TXTOUT

DESCRIPTION — Options 2...3 supported.
#2301 - Set 'GO TO FLAG' for testing
that next STMT is labeled.
#2302 - Verify stmt label, save in TXT
#2303 - Write type 27 TXT record

3-b6

GOAL COMPILER ROUTINE

NAME — SuB24

FUNCTION — This routine supports compilation of the
"INHIBIT TABLE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, LOOKUP, TXTOUT, FDLKUP

DESCRIPTION — Options 1. 7 supported.
#2401 - No Action
#2402 - Verify/save table NAME
#2403 - No Action
#2404 - Write type 32 TXT record
#2405 - Verify index, write type 33 TXT record
#2406 - Verify ROW No., write type 33 TXT record
#2407 - Verify ROW F.D., write type 33 TXT record

3-67

GOAL COMPILER ROUTINE

NAME — SUB25

FUNCTION — This routine supports compilation of the
"ISSUE DIGITAL PATTERN' statement.

CALLED BY — ACTION

- SUBROUTINES CALLED ~ ACTERR, TXTOUT

DESCRIPTION — Options 1...8 supported.
#2501 - Initialize flags/counters
#2502 - Save 1Ist External/designator (present value)
#2503 - Save 2nd External/designator (present value)
#2504 - Number pattern constant - write
typé 2 TXT record
#2505 ~ Internal name - save
#2506 - External Designator for NON *PRESENT
VALUE' types
#2507 - Write TXT record
#2508 - Save External Designator

3-68

GOAL COMPILER ROUTINE

NAME — SuBz2e

FUNCTION — This routine supports compilation of the

'LEAVE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT, INPUT, NEXTCR, RESET

DESCRIPTION — Options 1...10 supported.

#2601 - Initialize flags, check for subroutine
compilation

#2602 - Write type 4 TXT record (Quantity value)
#2603 - Write type 2 TXT record (Number value)
#2604 - Write type 2 TXT record (Number Pattern)
#2605 - Save Self Defining State Parameter
#2606 - Write type 8 TXT record (Text Constant)
#2607 - Save interna) name parameter
#2608 - Write Type 66 TXT record (with Parameters)
#2609 - Write Type 66 TXT record (without Parameters)
#2610 - Purge all data in the input stream until

the word RESUME is encountered.

3-09

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION -

GOAL COMPILER ROUTINE

suez7

This routine supports compilation of the

'"LET EQUAL' statement.

ACTION

ACTERR,

Options
#2701 -
#2702 -
#2703 -

#2704 -
#2705 -
#2706 -
#2707 -
#2708 -
#2709 -

TXTOUT

1...15 supported.

Initialize flags/counters

Verify, save internal name (on left of '=')
Check parenthesis count, write type 60

TXT record

Save '+'

Save '-'

Verify, save internal name in expression
Save operator type

Write type 4 TXT for self-defining gquantity
Write type 2 TXT for self-defining number

3-70

GOAL COMPILER ROUTINE

NAME — SUB27 (continued}

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION — #2710 - Count, save ‘("
#2711 - Count, save ')’
#2712 - Operator type = 1
#2713 - Operator type increment by 1
#2714 - Namecount = Q
#2715 - Check Name count - must be 1

3-71

GOAL COMPILER ROUTINE

NAME — SUB29

FUNCTION — This routine supports compilation of the
‘PERFORM SUBROUTINE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT, FDLKUP

DESCRIPTION — Options 1...16 supported
#2901 - Initialize flags/counters
#2902 - Save 'PROGRAM NAME'
#2903 - Write type 34/35 TXT record
#2904 - No Action
#2905 - No Action
#2906 - Self-defining Number Pattern Parm
#2907 - Self-defining Number Parm
#2908 - Self-defining Quantity Parm
#2909 - Self-defining State Parm

3-72

GOAL COMPILER ROUTINE

NAME -~ SUB29

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION — #2910 -'SeTf-defining Text Parm - Write

Type 8 TXT record |

#2911 - Function designator Parm - Write
Type 8 TXT record

#2912 - Internal Name Parm

#2913 - Write type 34 TXT record

#2914 - Same as #2902

#2915 - Write type 59 TXT record

#2916 - Save Revision Label

3-73

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB30

This routine supports compilation of the

'READ' statement.

ACTION

ACTERR, TXTOUT

Options'I...S supported.
#3001 - Verify External designator, save
#3002 - Verify/save internal name

#3003 - Write type 47 TXAT record

3-74

GOAL COMPILER ROUTINE

NAME — SUB31

FUNCTION — This routine supports compilation of the
'AVERAGE' statement

CALLED BY - ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT

DESCRIPTION — Options 1...4 supported,.
#3101

Save Nbr readings

#3102 - Verify External designator
#3103 - Verify Internal name
#3104 - Write type 48 TXT record

3-75

NAME —

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SuB32

This routine supports compilation of the

'RECORD DATA' statement

ACTION

ACTERR,

Options
#3201

#3202 -
#3203
#3204

#3205

#3206
#3207

1

#3208

#3209

1

TATOUT

-]...18 supported.

Initialize f]ags/counteré

Write type 40 TXT record

INVALID {ACTERR)

Save External Designator for 'PRESENT
VALUE' (sensor)

Write type 39 TXT record

INVALID (ACTERR)

INVALID (ACTERR)

Verify, save 'SYSTEM' type External Desig-
nator

INVALID {ACTERR)

3-76

GOAL COMPILER ROUTINE

NAME — SUB32 (continued)

FUNCTION —

CALLED BY -

- SUBROUTINES CALLED —

DESCRIPTION — #3210 - INVALID (ACTERR)
#3211 - INVALID (ACTERR)

#3212 - Text constant - write type 8 TXT record
#3213 ~ 'New Line' entry
#3214 - 'Internal Name' entry
#3215 - INVALID (ACTERR)
#3216 - Verify 'SYSTEM' type External
| Designator write type 18 TXT if required
#3217 - 'PRINT' request - set up External
Designator
#3218 - 'RECORD' request - set up External

Designator

3-77

GOAL COMPILER ROUTINE

NAME — SUB33

FUNCTION - This routine supports compilation of the
'"RELEASE CONCURRENT' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT, LOOKUP

DESCRIPTION ~ Options 1...5 supported.
#3301 - Initialize flags/counters
#3302 - Write type 37 TXT record
#3303 - Verify/save STMT NO. reference
#3304 - No Action
#3305 - No Actien

3-78

NAME —~

FUNCTION -

CALLED BY —

SUBROUTINES CALLED -

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB34

This routine supports compilation of the

'REPEAT' statement.

ACTION

ACTERR, LOOKUP, TXTOUT

Options‘l...7 supported.

#3407 - Initialize flags/counters

#3402 - Verify/save 1st STMT NO. reference
#3403 - Write type 24 TXT record

#3404 - Verify/save 2nd STMT NO. reference
#3405 - No Action

#3406 - Save repetition count

#3407 - No Action

3-79

GOAL COMPILER ROUTINE

NAME — SUB35

FUNCTION — This routine supports compilation of the
"REPLACE' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, NEXTCR, INPUT, LOOKUP, SYSERR

DESCRIPTION — Options 1...7 supported.

#3501 - Save 1st 'NAME'

#3502 - Save 2nd 'NAME'

#3503 - Save Ist 'TEXT'

#3504 - Save 2nd 'TEXT'

#3505 - Save 1st 'Funct designator’'.
#3506 - Save 2nd 'Funct designator’'.
#3507 - Update substitution table

3-8U

GOAL COMPILER ROUTINE

NAME — SUB36

FUNCTION — This routine supports compilation of the
'"REQUEST KEYBOARD' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, FDLKUP, TXTOUT

DESCRIPTION — Options 1...8 supported.
#3601

Initialize flags/counters

#3602 - Verify, save 'SYSTEM' Function Designator
Write type 18 TXT record

#3603 - Verify/save Internal Name (for input)

#3604 - Write type 55 TXT record

#3605 - Save TEXT constant - write type 8
TXT recofd

#3606 - No Action

#3607 ~ 'New Line' entry - save

#3608 - Verify/Save 'Internal/Name’' - Text

type message

3-81

GOAL COMPILER ROUTINE

NAME — SUB37

FUNCTION — This routine supports compilation of the
'"RESUME' statement,

CALLED BY ~ ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT

DESCRIPTION — Option 1 is supported.
#3701 - Write type 67 TXT record

3-82

GOAL COMPILER ROUTINE

NAME — SUB38

FUNCTION — ~ This routine supports compilation of the
'SET DISCRETE' statement.

CALLEDBY — ACTION

SUBROUTINES CALLED — ACTERR, TXTOUT

DESCRIPTION — Options 1...12 supported.

#3801 - Initialize flags/counters

#3802 - 1st External Designator - save -
"PRESENT VALUE' option

#3803 - 2nd External Designator - save -
'"PRESENT VALUE' option

#3804 - Save 1st External Designator -
‘SET <FD> option

#3805 - Prep for type 46 TXT record

#3866 - Save 'STATE'

#3807 - Save 'INTERNAL NAME'

#3808 - Save 'TIME'

3-83

GOAL COMPILER ROUTINE

NAME — SUB38 (continued)

FUNCTION -

CALLED BY -

SUBROUTINES CALLED —

DESCRIPTION — #3809 - Set flag for 'OPEN/'TURN ON’
#3810 - Set flag for 'CLOSE'/'TURN OFF'
#3811 - Verify List counts
#3812 - Write TXT record

3-84

GOAL COMPILER ROUTINE

NAME — SUB40

FUNCTION — This routine supports compilation of the
'STOP' statement.

CALLED BY — ACTION

SUBROUTINES CALLED -~ ACTERR, TXTOUT, LOOKUP

DESCRIPTION — Options 1...5 supported.
#4001

Initialize flags/counters

#4002 - Write type 54 TXT record

#4003 - Note - No restart labels specified
#4004 - Save STMT LABELS

#4005 - Generate array for 'LABELS'

3-85

GOAL COMPILER ROUTINE

NAME — SUB41

FUNCTION — This routine supports compilation of the
'"TERMINATE' statement.

CALLED BY - ACTION

SUBROUTINES CALLED ~ ACTERR, TXTOUT

DESCRIPTION — Options 1.. .3 supported.
#4101 - Initfalize flags/counters
#4102 - Write type 25 TXT record
#4103 - Set flag for 'TERMINATE SYSTEM'

3-8b

GOAL COMPILER ROUTINE

NAME — suB42

FUNCTION — This routine supports compilation of the
'"USE DATA BANK' statement.

CALLED BY — ACTION

SUBROUTINES CALLED — ACTERR, SEEKDB, LOOKUP

DESCRIPTION — Options 1...4 supported.
#4201 - Initialize flags/counters
#4202 - Save 'DATA BANK NAME'
#4203 - Verify 'Data Bank' add to use list
#4204 - Save Revision Label

3-87

NAME —

FUNCTION —

CALLED BY -

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

sSuB44

This routine supports compilation of the

'DIRECTIVES' statement.

ACGTION

ACTERR,

Options
#4401 -
#4402 -
#4403 -
#4404 -
#4405 -
#4406 -
#4407 -
#4408 -
#4409 -

NEXTCR, INPUT

-]...19 supported.

Set EXLIST 'no print' FLAG

Verify set 'sequencing field' length

Set 'NO TXT' flag

Clear all output listing enable flags
Enable 'SOURCE LISTING'

Enable 'EXPANDED LISTING'

Enable 'LABEL XREF LISTING'

Enable 'INTERNAL NAME XREF LISTING'
Enable 'FUNCTION DESIGNATOR XREF LISTING'

3-88

GOAL COMPILER ROUTINE

NAME — SUB44 (continued)

FUNCTION -

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION — #4410 - Enable 'DIAGNOSTIC SUMMARY LISTING'
#4411 - Save 'TITLE'
#4412 - Save 'DATE’
#4413 - Save 'Page Size'
#4414 - Save 'Line Size'
#4415 - Set up for new page
#4416 - Set page count
#4417 - Set convert, reset punch
#4418 - Set line size to 80, set punch flag

#4419 - Reset punch and convert flags

3-89

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB45

The routine supports compilation of the

'"WHEN INTERRUPT' statement.

ACTION

ACTERR, TXTOUT, LOOKUP, FDLKUP

Options 1...16 supported.

#4501 - Initialize flags

#4502 - Save Subroutine Name

#4503 - Write type 34, 35, and 68 TXT records

#4504 - Save statement nbr, Write type 27 TXT
record

#4505 - No Action

#4506 - Write type 2 TXT record {(Number Pattern)

#4507 - Write type 2 TXT record {Number Value)

#4508 - Write type 4 TXT record (Quantity value)}

#4509 - Save Self Defining State Parameter

#4510 - Write type 8 TXT record (Internal name)

3-9u

GOAL COMPILER ROUTINE

NAME — SUB45 (continued)

FUNCTION —

CALLED BY —

SUBROUTINES CALLED ~

DESCRIPTION —- #4511 - Write type 18 TXT record (Function
Designator)
#4512 - Save Internal Name
#4513 - Set "Critical" Subroutine Flag
#4514 - No Action
#4515 - Write type 65 TXT record
#4516 - Save 'RETURN TO' statement number

3-91

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SuB48

This routine supports compilation of the

'"PREFIX'

ACTION

ACTERR, FDLKUP, TXTOUT

Options'1...45 supported.
#4801 - Note 'AFTER' option
#4802 - Note 'WHEN' option
#4803 - Verify Time <F.D.>, write type 18 TXT record
#4804 - Verify 'TIME VALUE'
#4805 - Verify 'INTERNAL NAME'
#4806 - Write type 52 TXT record for 'TIME PREFIX'
#4807 - No Action
#4808 - Initialize flags/counters for 'LIMITS TEST'
#4809 - Save 'INTERNAL NAMES' in 'LIMITS TEST'
#4810 - Save 'NUMBER' in ‘LIMITS TEST', write

type 2 TXT record

3-92

GOAL COMPILER ROUTINE

NAME — SUB48 (continued)

FUNCTION —

CALLED BY —

SUBROUTINES CALLED -

DESCRIPTION — #4811 - Save 'QUANTITY' in 'LIMITS TEST', write

type 4 TXT |

#4812 - Note 'NOT BETWEEN' option

#4813 - Verify list counts

#4814 - No Action

#4815 - Note 'IF' option

#4816 - Negate 'GO TO' TEST

#4817 - Write type 56 TXT record

#4818 - Verify compatibility for 'RELATIONAL TEST®

#4819 - Save 'STATE'

#4820 - Determine Relational operator

3-93

NAME —

FUNCTION —

CALLED BY —

. SUBROUTINES CALLED ~

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB48 (continued)

#4821

#4822
#4823

#4824
#4825
#4826
#4827
#4828
#4829
#4830

-Process TEXT constant - write

type 8 TXT record

‘Initialize Relational operator test

Write type 57/58 TXT records, process
impiied 'VERIFY/STOP' if required
Note 'VERIFY THEN'

Note 'VERIFY ELSE/AND'

Note 'VERIFY ELSE'

Note ‘IMPLIED STOP'

No Action

Initialize for 'OUTPUT EXCEPTION'
Note 'PRINT OPTION'

3-94

NAME ~

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB48 (continued)

#4831
#4832
#4833
#4834
#4835
#4836
#4837
#4838
#4839
#4840
#4841
#4842

Note
Note

'DISPLAY OPTION'
'"RECORD OPTION'

Process 'TEXT'

Process 'INTERNAL NAME' for 'VERIFY'

Process 'EXTERNAL DESIGNATOR' for VERIFY

Zero
Save
Save
Save
Save

Save

time buffer - Initialize
'DAYS'

"HOURS '

"MIN'

'SEC’

'S !

Update for signed 'TIME VALUE'

3~95

GOAL COMPILER ROUTINE

NAME — SUB48 (continued)

FUNCTION -

CALLEDBY -

SUBROQUTINES CALLED —

DESCRIPTION — #4843 - Save Time Value - Write Type 4
Text Record

#4844 - Save Pointers to Internal Name

#4845 - Save 'WITHIN' Time Value

3-9¢6

NAME —

FUNCTION —

CALLED BY —

SUBROUTINES CALLED —

DESCRIPTION —

GOAL COMPILER ROUTINE

SUB49

This routine supports compilation of

"INTERNAL NAME'.

ACTION

ACTERR,

Options
#4901

#4902
#4903 -

#4904 -
#4905 -
#4906 -
#4907 -
#4908 -
#4909 -
#4910 -

LOOKUP, FDLKUP

1...10 supported.

Verify 'NAME' is defined, save type, etc.
Verify 'ROW DESIGNATOR'

Verify 'COLUMN NAME'

Only 'COLUMN NAME' given

Set flag for column subscript

Set flag for row subscript

Process 'TABLE'

Process 'LIST'

Process 'LIST' subscript

Process 'SCALAR' (single) NAME

3-97

GOAL COMPILER ROUTINE

NAME — | SUB51

FUNCTION — This subroutine substitutes GOAL words and
phrdses for corresponding short form words

and phrases.

CALLED BY — ACTION

. SUBROUTINES CALLED — NEXTCR

DESCRIPTION— This subroutine is entered from the syntax
action numbers #5101, #5102, #5103. This
parser sets SUBTXT to an address in STXTAB
which contains the number of characters in
the substitute field. If CONVRT, which is
set by the Compiler Directives Subroutine,
is equal to one, the substitution is made.
#5101 ~ Save pointer to the first letter in
a short form word

#5102 - If CONVRT equals one, make the sub-
stitution and apend a blank, the letter
S, or both as appropriate

#5103 - Mark the short form word as singular

or plural
3-98

GOAL COMPILER ROUTINE

NAME - SuBs2

FUNCTION — This routine preprocesses free form data bank
input records and outputs fixed form records

for use by the data bank maintenance programs.

CALLED BY — ACTION

. SUBROUTINES CALLED — ACTERR, (FORTRAN I/0)

DESCRIPTION - Options 1...26 supported
#5201 - Move name to output buffer
#5202 - Write fixed form 'DATABANK' record
#5203 - Write 'END DATABANK' statement
#5204 - Move function designator to output buffer
#5205 - Write fixed form 'SPECIFY' record
#5206 - Move 'LOAD' to output buffer
#5207 - Move 'SENSOR' to output buffer
#5208 - Move 'SYSTEM' to output buffer
#5209 - Move 'DISCRETE' to output buffer
#5210 - Move 'ANALOG to output buffer

3-99

GOAL COMPILER ROUTINE

NAME — SuB52 {Continued) -

FUNCTION —

CALLED BY -

- SUBROQUTINES CALLED —

DESCRIPTION — #5211

]

“Move 'CLOCK' to output buffer

#5212 - Move 'PRINTER' to output buffer
#5213 - Move 'CRT' to output buffer
#5214 - Move 'TAPE' to output buffer
#5215 - End of input data - set ENDFLG=1
#5216 - Support function designator alternate
form - output first record
#5217 - Limit address to 4 digits and move
it to output area
#5218 - Move subroutine name to output area

#5219 - Move revision label to output area

#5220 - Write fixed form 'DELETEDB' record

3-100

GOAL COMPILER ROUTINE

NAME — suB52 (Continued)

FUNCTION —

CALLED BY —

- SUBROUTINES CALLED —

DESCRIPTION — #5221 - Write fixed form 'DELETE' record
#5222 - Move 'INTERRUPT' and value to output area
#5223 - Move 'FLAG' and value to output area
#5224 - Output 'NAME SUBROUTINE' record
#5225 - Set flag to indicate preprocessor mode
#5226 - Limit FORTRAN subroutine name to 6

characters

3-101

3.2.3 Intermediate Text Output Formats

The GOAL compiler generates an intermediate text output record for each

of the syntactical elements of the GOAL language. The records are variable
in length, with each having a standard 7 word header followed by up to 400
words of text data. Each word is a 16 bit integer which is referenced in
IBM System/360 terminology as a halfword (HW). A1l records are of the
following general format.

HW# 0 - Number of words following (6 through 400)
1 - Internal text record number (sequence 1 through n)
2 - Type Code (1 through 68)
3 - Continuation Code {0 = stand alone text record
(1 = additional text data to follow
4 - GOAL statement number
5 - GOAL statement label number
6 - Variable
7- n - Data

A standard format is used for representation of External Designators,
Internal Names. and Comparison Tests. The individual format descriptions
and the descriptions of the intermediate text records are given on the
following pages.

3-102

£0[-€

STANDARD REPRESENTATION OF AN INTERNAL NAME

(Always 5 Half Words)

Type Name Rows Columns
Numeric Scalar 1 Variable Sequence Number 0 0 1
Quantity Scaler Z Variable Sequence Number 0 0 1
State Scalar 3 Variable Sequence Number 0 0])
Text Scalar 4 Variable Sequence Number 0 0 Length of text string
Numeric List 5 Variable Sequence Number 0 0 Number of entries
Numeric List Indexed 5 Yariable Sequence Number 1/-V# 0 1
Quantity List 6 Variable Sequence Number 0 0 Number of entries
Quantity List Indexed 6 Variable Sequence Number I/-V# 0 1
State List 7 Variable Sequence Number 0 0 Number of entries
State List Indexed 7 Variable Sequence Number I/-V# 0 1
Text List 8 Variable Sequence Number 0 Length of Number of entries
Text List Indexed 8 Variable Sequence Number I/-V# text string]
Numeric Table Column 9 Variable Sequence Number 0 1/-V# Number of rows
Numeric Table Element g Variable Sequence Number 1/-V# 1/-V#]
Quantity Table Column 10 | Variable Sequence Number 0 1/-V# Number of rows
Quantity Table Element 10 Variable Seguence Number I/-V# 1
State Table Column 11 Variable Sequence Number 0 1/-V# Number of rows
State Table Element 11 Variable Sequence Number I/-V# I/-v# 1
Text Table Column 12 Variable Sequence Number 0 I/-v# Number of rows
Text Table Element 12 Variable Sequence Number 1/-V# I/-V# 1

I=A
-V# =

positive Integer
The negative variable sequence number of the variable conta1n1ng the 1ndex number

STANDARD REPRESENTATION OF AN EXTERNAL DESIGNATOR
(Always 4 Half Words)

' Type ‘ Variable Sequence Number l Number of Rows Code ‘
Type
External

Data Bank Designator Compiler Code
1 Load Discrete 4 0 = Table Name Functions
2 Load Analog 2 1 = Number Inhibit Arra
3 Load Clock 2
4 Sensor Discrete 3
5 Sensor Analog 1
6 Sensor Clock 1
7 System Printer 5
8 System Display 5
9 System Tape 5
10 Subroutine 6
11 Interrupt 7
12 System Flag 8

3-104

G01-¢

STANDARD REPRESENTATION OF COMPARISON TEST

(Always 17 Half Words)

Type
1 1st Internal Name 2nd Internal Name 3rd Internal Name OP Count
2 1st External Name 2nd Internal Name 3rd Internal Name 0P Count
3 1st Internal Name 2nd Internal Name Op Count
4 1st External Designator | 2nd Internal Name 0P Count
HW1 HW2-6 HW7-11 HW12-16 HW17
Type OP Count
1 - Limit Formula Internal Names 1-GT
2 - Limit Formula External Designator 2 - LT
3 - Relational Formula Internal Names 3 - GE
4 - Relational Formula External Designator 4 - LE
5 - EQ
6 - NE
7 - ON

8 - OFF

o o

10

n

12
13
14
15
16
17
18
19
20
21
22
23

INTERMEDIATE TEXT TYPES

Name
Declare Numeric Data (Uninitia]ized)
Deciare Numeric Data (Initialized)
Declare Quantity Data (Uninitialized)
Declare Quantity Data (Initialized)
Declare State Data (Uninitialized)
Declare State (Initialized)
Declare Text (Uninitialized)
Declare Text (Initialized)
Declare Numeric List (Uninitialized)
Declare Numeric List (Initialized)
Declare Quantity List (Uninitialized)
Declare Quantity List (Initialized)
Declare State List (Uninitialized)
Declare State List (Initialized)
Declare Text List (Uninitialized/Initialized)
Declare Text List (Row Initialization)
Declare Numeric Table (Uninitialized/Initialized)
Function Designator Array
Declare Numeric Table (Row Initialization)
Declare Quantity Table (Uninitialized/Initialized)
Declare Quantity Table (Row Initialized)
Declare State Table (Uninitialized/Initialized)

Declare State Table (Row Initialization)

3-106

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

INTERMEDIATE TEXT TYPES

(Continued)

Name
Repeat Statement
Terminate Statement
Statement Label
GO TO Statement
Begin Program
End Program
Activate Table (All)
Activate Table (Row)
Inhibit Table (A11)
Inhibit Table (Row)
Enter/Leave Critical Mode
Perform Subroutine

Concurrently Perform

Release Concurrent Statement

Assign Statement
Record Present Value of
Record Statement

Apply Present Value of

Apply Analog (1list or table column)

Apply Analog (scalars)

Set Present Value of

Set External Designator (1list or table column)

Set Discrete (scalars)

Read Statement

3-107

48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68

INTERMEDIATE TEXT TYPES
(Continued)

Name

Average

Issue Digital Pattern {present value of)

Issue Digital Pattern (list or table column)

Issue Digital Pattern (scalars)

Time Prefix

Delay Statement

Stop Statement

Request Keyboard

Condition Prefix (If/Then variation)
Condition Prefix (Verify)

Output Exceptions

Perform Program

Let Equal

Begin Subroutine

Declare Text Table (Uninitialized/Initialized)

Declare Text Table (Row Initialization)

Disable Interrupt
When Interrupt
Leave Statement
Resume Statement

Return To

3-1086

DECLARE NUMERIC DATA (Uninitialized)

Hi STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 1
Continuation Code =0
GOAL Statement Number
GOAL Statement Label

(=23 LS B <1 (8] |)

Not Used

* ok Kk k k kK k ok k ok ok ok ok ok hk ok ok ok k ko ok ok kR ok ok kWK kKKK %

1 Variable Sequence Number

3-1u9

DECLARE NUMERIC DATA (Initialized)

HW % STANDARD HEADER

i Intermediate Text Record Number

2 Record Type = 2

——d

3 f Continuation Code = O
4 " GOAL Statement Number
5 GOAL Statement Label

6 | Not Used

1 Variable Sequence Number

= W o
o

T

} Initialization Value

3-110

DECLARE QUANTITY DATA {Uninitialized)

HW ; STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 3

3 Continuation Co&e = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 | Not Used
.**i*********************************

1 Variable Sequence Number
i

3-111

DECLARE QUANTITY DATA (Initialized)

i

HW | STANDARD HEADER

—d

% Intermediate Text Record Number
2 ' Record Type = 4)

3 Continuation Co&e = 0

4 j GOAL Statement Number

. 5 ' GOAL Statement Label

()]

; Not Used

i*******************************

st

;‘Variab1e Sequence Number

2 i 0
300
4 | Quantity Number 1 thru 63 or - 1
(The -1 denotes an initialized time entry.)
5} Initialized Data

6"

3-112

DECLARE STATE (Uninitialized)

HW STANDARD HEADER
1 . Intermediate Text Record Number
. Record Type = 3 —

- Continuation Code = 0

] w [aN]

GOAL Statement Number
5 GOAL Statement Label
6 i Not Used

%*******************************

1 :Variable Sequence Number

!

3-113

_ g DECLARE STATE (Initialized)

i
HW STANDARD HEADER

1 ; Intermediate Text Record Number
2 i Record Type = 6
3 Continuation Code = 0
4 | GOAL Statement Number

. 5 | GOAL Statement Label
6 % Not Used

k% k %k k k Kk ok %k ok ok k k ok hk ok ko kkk ok kR kR KRk Rk kR

1 Variable Sequence Number

2 10
3 0
4 1o

5 ' State {0 or 1)

3-114

DECLARE TEXT (Uninitialized)

HW STANDARD HEADER
1 Intermediate Text Record Number
- Record Type = 7 -

+ Continuation Code = O

T L8] ™o

~ GOAL Statement Number
. 5 GOAL Statement Label
6 5 Not Used
é*******************************
1 ?Variab]e Sequence Number
2 ;0
3 |0

4 | Length of text variabTle

3-115

DECLARE TEXT (Initialized)

HW | STANDARD HEADER

1 ? Intermediate Text Record Number
" Record Type = 8
? Continuation Code = O

GOAL Statement Number

- w ~

5 GOAL Statement Label
6 . Not Used

:*******************************
i

:Variable Sequence Number

o

2 0

3 10

4 iLength of text variabte
5

E]st text character

i

' 2nd text character

h

i
i

|
n+4§nth text character (1s5ns80)
|

3-116

DECLARE NUMERIC LIST (Uninitialized)

HW STANDARD HI-ADER
1 Intermediate Tex; Record Number
Record Type = 9
Continuation Cods = O
GOAL Statement Number
| GOAL Statement Label

o o [£Y)]

- Not Used
_ i
* oKk ko k k KK Kk % Kk ok ok dk ok ok ok ok ok ok ok k ok ok ok ok ok k ok kR kK

1 Variable Sequence Number

2 | Number of entries in list

3-117

| . DECLARE NUMERIC LIST (Initialized)

HW é STANDARD HEADER

1 é Intermediate Text Record.Number
% Record Type = 10

; Continuation Code = 0

GOAL Statement Number

B w ro

5 GOAL Statement Label

6 ? Not Used

- Xk kW ok ok Kk ok ok ok ok ok kok ok ok Kk ok ok ok ok Kk kW Rk KK Kk ok
1 % Variable Sequence Number

2 | Number of entries in list

3 |0

4 10

g} 1st Value

731 2nd Value -

2n+3 i §ns
2ntd nth value (1°n*99)

3-118

DECLARE QUANTITY LIST (Uninitialized)

HW STANDARD HEADER
1 | Intermediate Text Record Number
- Record Type =11
~ Continuation Code = 0
GOAL Statement Number
| GOAL Statement Label

L=)] o [T%)]

. Not Used

‘**'*********************************
1 Variable Sequence Number

2 Number of Rows

3-119

DECLARE QUANTITY LIST (Initialized)

HiW STANDARD HEADER
1 Intermediate Text Record Number’
Record Type = 12
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label

St W A W

Not Used

* k k k k k k k k& k * k k k k k ok k k *kk kk kk * ok kkkk Kk Kk Kk Kk Kk k ¥ %

—

Variable Sequence Number

2 Number of Rows

3 0

4 0

g} 1st Quantity Value

g} 2nd Quantity Value
2n+3 o
onsq) Nth Quantity Value
2n+5 . . .
2n+6} Ist Quantity Dimension
2nt+7 : . .
on+8) 2nd Quantity Dimension
4n+3

an+a] Nth Quantity Dimension (12n299)

3-120

DECLARE STATE LIST (Uninitialized)

HW j STANDARD HEADER

1 i Intermediate Text Record Number
' Record Type = 13
. Continuation Code = 0

GOAL Statement Number

= LT NN

5 GOAL Statement Label

6 | Not Used

i*******************************

1 jVariab]e Sequence Numbey

2 %Number of Rows
t

|
|
|

3-121

DECLARE STATE LIST {Initialized)

HW STANDARD HEADER

1 ' Intermediate Text Record Number

2 Record Type = 14
3 Continuation Code = 0]
4 GOAL Statement Number
5 ; GOAL Statement Label
6 | Not Used

r**é*********************************
1 % Variable Sequence Number

| Number of Rows

0

0

ilst State (0 or 1)

[T & B L " I o

| 2nd 'State

i
H
|

n+d fnth State (1sn<99)

3-122

HW
1

2
3
&
5
6

DECLARE TEXT LIST (Uninitialized/Initialized)

STANDARD HEADER

- Intermediate Text Record Number
é Record Type = 15

; Continuation Code = 0

~ GOAL Statement Number

f GOAL Statement Labe]

; Not Used

* kW ok ok ok ok ok ok ok k k ok dkk ok ok k ok kok ok ok ok k ok ok ok ok ok ok ok kR

1
2
3

*A
in

B

+ Variable Sequence Number

éNumber of Rows

| Maximum length of text data

type 15 Intermediate Text record must precede one or more type 16

rmediate Text records.

3-123

DECLARE TEXT LIST (Row Initialization)
! ,
|
HW 1 STANDARD HEADER

; Intermediate Text Record Number

—t

i Record Type = 16
§ Continuation Co&e = 0

? GOAL Statement Number
| GOAL Statement Label

(=] (52 BN W [p]

Not Used

ok k kW ok k ok kok ok ok kok ok ok ok ok ok ko ok ok ok ok Kk kk Kk hk ok ok k%

1 | Variable Sequence Number

2 | Row Number

3 | Length of Text
4 | 1st Character

5 (an Character

nt4 | nth Character (1<n<80)

*A type 15 Intermediate Text record must precede a group of type 16

Intermediate Text records.
|

3-124

DECLARE NUMERIC TABLE (Uninitialized/Initialized)

HW - STANDARD HEADER

1 | Intermediate Text Record Number

2 Record Type = 17

3 Continuation Code = 0

4 GOAL Statement Number
‘ 5 . GOAL Statement Label

6 Mot Used

.**{*********************************

1 Variable Seguence Number

2 ;Number of Rows

3 | Number of Columns

*A type 17 Intermediate Text record must precede a group of type 19

Intbrmediate Text records.

3-125

FUNCTION DESIGNATOR ARRAY

HW ! STANDARD HEADER

|
|
!
ﬁ Intermediate Text Record Number
2 ' Record Type =18

3 ' Continuation Code = 0

4 ' GDAL Statement Number
. 5 . GOAL Statement Label
6 Not Used

’**‘*********************************
1

1 | VYariable Sequence Number

2 jNumber of Rows {Number of Function Designators)
3 | Type b . .
4 | Address st Function Designator
2 Xﬁgﬁess } 2nd Function Designator
|
m2 Type

m3 Address } nth Function Designator (lsns45)

3-12b

DECLARE NUMERIC TABLE (Row Initialization)

HW STANDARD HEADER
1 j Intermediate Text Record Number
2 é Record Type = 19

' Continuation Code = 0

. GOAL Statement Label

3
4 ' GOAL Statement Number
5
6

" Not Used

.**i*********************************
1 Variable Sequence Number

2 | Row Number

3 | Number of Columns

4 10

g} - 1st Entry in Row
7o

8} - 2nd Entry in Row

|
n+é4, . < <
n+5} 'nth Entry in Row (1=n210)
*A type 17 Intermediate Text record must precede a group of type 19

Intermediate Text records.

3-127

HW |

W N

Tk ok

*A

typ

DECLARE QUANTITY TABLE (Uninitialized/Initialized)

STANDARD HEADER
!

i Intermediate Text Record Number

{ Record Type = 20
| .
' Continuation Code = 0 or 1

! -
I

- GDAL Statement Number

| GDAL Statement Label

Not Used

* ok ok ok ok ok ok ok vk ok Rk % ok kR ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok k%

' Variable Sequence Number
|

Number of Rows

Number of Columns

[

type 20 Intermediate Text record with HW3=1 must precede a group of

e 21 Intermediate Text records.

3-128

DECLARE QUANTITY TABLE (Row Initialization)

HW f STANDARD HEADER -
1 : Intermediate Text Record Number
} Recard Type = 21

~ Continuation Code = 0

I - 7% B S}

GOAL Statement Number
. 5 GOAL Statement Label
6 . Not Used

’**j*********************************
1 Variable Sequence Number

2 Row Number

3 Number of Columns

4 0

g} ;1st Entry in Row

7

g} | 2nd Entry in Row
1 : ,

2n+33 “nth Entry in Row
2n+4

2n+5 1st Dimensian
entb 2nd Dimension

»

3n+4 nth Dimension (1<n210)

*There will be a type 2] Intermediate Text record for each row of the table.
A type 20 Intermediate Text record with the continuation code Equal 1 must

preEede the type 21 Intermediate Text records.
: 3-129

| DECLARE STATE TABLE (Uninitialized/Initialized)

HW { STANDARD HEADER™
1 j Intermediate Text Record Number
2 ' Record Type = 22
3 ; Continuation Code = 0
4 GOAL Statement Number
5 GOAL Statement Label
6 ; Not Uged

'**3*********************************
|
1 Variable Sequence Number

2 | Number of Rows

(28]

%Number of Columns

1

|

|
*A type 22 Intermediate Text record will precede a group of type 23

Intermediate Text records.

3-130

DECLARE STATE TABLE (Row Initialization)

Hi STANDARD HEADER

1 j Intermediate Text Record Number
2 | Record Type = 23

3 | Continuation Code = 0

4 GOAL Statement Number

5 - GOAL Statement Label

& Not Used

'**‘*********************************

—ad

- Variable Sequence Number

2 - Row Number

3 3Number of Columns

4 0 ‘
5 ilst State (0 or 1)

6 |2nd State

n+4 nth State (1<n<10)}

*There will be a type 23 Intermediate Text record for each row of the table.
A type 22 Intermediate Text record must precede the type 23 Intermediate Text

records.

3-131

REPEAT STATEMENT

HW STANDARD HEADER
1 ! Intermediate Text Record Number
Record Type = 24

Continuation Ccde = 0

. GOAL Statement Label

2
3
g ~ GOAL Statement Number
5
6

f Not Used

%*******************************
|

1 Variable Sequence Number

;Numer of times to repeat

2
3 1Beginning Step Number
4

iEnding Step Number

3-132

TERMINATE STATEMENT

HW j STANDARD HEADER

1 - Intermediate Text Record Number
~ Record Type = 25
~ Continuation Code = 0

GOAL Statement Number

- L 4N] ™~

5 GOAL Statement Label
6 . Not Used

* %k k k ok ok k kK %k ok ok ok k ok Rk ok Rk Kk ok k R kKR KKKk Kk kK kK

1 0Oorid

L= B w

Terminate;

[—
n

Terminate System;

3-133

| o STATEMENT LABEL

HW STANDARD HEADER
1 Intermediate Text Record Number
2 Record Type = 26

Continuation Code = 0

GOAL Statement Number

| GOAL Statement Label

[=2] (5 I (4]

Not Used

'**;*********************************

3-134

GO TO STATEMENT

HW STANDARD HEADER™
1 | Intermediate Text Record Number
2 1 Record Type = 27
3 . Continuation Code = 0
4 GDAL Statement Number
' 5 - GOAL Statement Label
6 ; Not Uéed
) *5* * kK kK kK k ok k kK kk ok ok ok kok ok ok ok ok Rk kR kR kK ok kKK
1

é]st Character

[a]

|
3 }End Character

.

} GOAL Statement Number to branch to
' 3rd Character .

| i
5 | 4th Character /

i
!

' 3-13b5

| | BEGIN PROGRAM

MW STANDARD HEADER

1 ? Intermediate Text Record Number
Record Type = 28
Continuation Code = 0

- GOAL Statement Number

- w [a]

5 = GOAL Statement Label

6 ' Chain 12 Reference Number

Tk Rk ok ok ke Kk ok g ok Kk Kk R K Wk Kk % ok R Rk R K kKK kK kK Kk R

1

2 1st Four Characters of Program Name
3
4

1 1st Four Characters of Revision Label
7[

3-136

END PROGRAM

HW STANDARD HEADER

1 Intermediate Text Record Number
- Record Type = 29

Continuation Code = 0

GOAL Statement Number

GOAL Statement Label

[=2] [& B w ~N

~ Not Used

'**f***********'**********************

3-137

ACTIVATE TABLE (ALL)

HW STANDARD HEADER
1 f Intermediate Text Record Number
~ Record Type = 30
 Continuation Code = O
- GOAL Statement Number
GOAL Statement Label

(=] S 2 TR < w Mo

i Not Used
|
TR Wk R H ok ok kK ok ok kK K Kk ok ok ok ok kK ok kok ok ok ok ok ok kKK kKR

i §Var1ab1e Sequence Number

2 éNumber of Rows

3-138%

ACTIVATE TABLE (ROW)

HW STANDARD HEADER™

1 Intermediate Text Record Number
Record Type = 31
Continuation Code = 0

GOAL Statement Number

T [€8] ™

. 5 GOAL Statement Label

6 Not Used

B I I R R R E E R R R R R R E E R EE R

1 Variable Sequence Number

2 0 | 1
‘ or
3 Row Number_f Yariable Number of Index

3-139

INHIBIT TABLE (ALL)

W STANDARD HEADER

——

f Intermediate Text Record Number
Record Type = 32
" Continuation Code = 0

GOAL Statement Number

- w [

5 ' GOAL Statement Label
6 ' Not Used

"k k k k ok ok ok ok k Kk ok Kk Kk k ok ok ok k ok ok ok ok ok ok k ok kk ok k k ok k %k

\
1 ' Variable Sequence Number

2 iNumber of Rows

3

3-140

INHIBIT TABLE (ROW)

HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 33

~ Continuation Code = O

GOAL Statement Number

o [*8] [a®]

5 GOAL Statement Label
6 ' Not Used

'**‘*********************************

1 Variable Sequence Number

2 ;0 1
i or
3 | Row Number Variable Number of Index

f

3-141

HW

(=2 L3 2 I = [[\5

*

ENTER/LEAVE CRITICAL MODE

STANDARD HEADER

Intermediate Text Record Number

i Record Type = 34

Continuation Code =

GDAL Statement Number

GOAL Statement Label

Not Uﬁed
o % % ok K% Kk ok Xk ok W R W W Wk ko ok ok k de Rk k ok ko ok kR ok kW%
Dor i

0 = Enter Critical

1 = Leave Cfitica]

3-142

PERFORM SUBROUTINE

HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 35

- Continuation Code = 0O

GOAL Statement Number

R — T 7% N

5 GOAL Statement Label

6 - Chain-12 Reference Number

B B B B B B N L AR B R EE AR R BN N B I R I R IR O S R)
} 1st 4 characters of Subroutine name

'Number of parameters

|
}Ist Parameter

—
WO~ (5] e LD g -t

11
12
13 ? 2nd Parameter
14
15

*

n+5

nté |
n+7 % nth Parameter (0.n_10}

n+8
n+9 ‘
The;parameters will be standard 5 word internal names or expanded Function

Desﬁgnator. The ist word for Expanded Function Designators will be -1.

3-143

CONCURRENTLY PERFORM

HW STANDARD HEADER
1 Intermediate Text Record Number
2 Record Type = 36

Continuation Code = 0

GOAL Statement Number

GOAL Statement Label

h o Ia W

Not Used

h ok R Kk Rk Rk R Ak ok ok ok ok ok k ok k ok ok ok ok ok ok ok k ok Kk ok k Kk ok ok ok ok ok

Interna1_Time Value Variable
(Zero in HW1 implies execute one time only)

O Lo N~

3-144

RELEASE CONCURRENT STATEMENT(S)

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 37

3 Continuation Code = O

4 GOAL Statement Number

5 GOAL Statement Label
6 Not Used
‘**‘********************'*************

1 Number of statements to be released
(Zero implies release ail)

2 . Ist statement number to be released

3 . 2nd statement number to be released

t

nt1l last statement number to be released {15ns10)

3-14»

ASSIGN STATEMENT

HW ; STANDARD HEADER:

1 Intermediate Text Record Number
2 Record Type = 38

3 i Continuation Code = 0

4 GOAL Statement Number

5 - GOAL Statement Label

6 ! Not Used

Tk ok k Kk ok ok ok ok kK kK Kk kK ok ok ok ok k ok ok ok k ok ok kK h ok k ok kX

" Internal Name Type (1-11)

:
2 | Variable sequence Number

3 | Row Ist Internal Name
4 | Column

5 | Length

6 ' Internal Name Type (1-11)

7 | Variable Seguence Number

8 | Row 2nd Internal Name
9 ' Column

10 | Length

3-14b

RECORD PRESENT VALUE STATEMENT

HW STANDARD HEADER
1 ~ Intermediate Text Record Number
Record Type = 39
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label

th n B W N

" Not Used

Tl T ok kol ke ok e e ke e W R ke ok % %k ke ok ke ok ok k ko koW ok ok ok ok kX

Object External Designator. (Where the data is to be recorded)

v

Input External Designator (What data is to be recorded)

[P

QQ~IOh N £ L) PO —

*Standard External Designator 4 half word format.

3-147

STOP STATEMENT

KW | STANDARD HEADER -
1 i}Intermediate Text Record Number
2 %Record Type = 54
3 :Continuation Codé = 0
4 GOAL Statement Number N
5‘ GOAL Statement Label
6 Not Used
T Wk K KKKk kX kR Kk N #odk % % Rk Kk ok ok ok ko Wk Rk Wk
1 i Variable Sequence Number (HW1=0 if HW2=0)
Mumber of Entries (restart Tabels, 0sns10)

Ist Restart Label

2
3
4 .| 2nd Restart Label

n+2 '| nth Restart. Label

3-148

RECORD STATEMENT

HW STANDARD HEADER’
1 : Intermediate Text Record Number
2?medwm=40
3 Continuation Code = O
4 | GOAL Statement Number
5 GOAL Statement Label
6 | Not Used

Tk kik ok ko k k ok k kK ok W Kk ok ok k ok ok koo ok ok ko ko Nk kK
i

1

g} Object External Designator (Where the data is to be recorded.)
4J)

_ Number of internal names (12n<25)

[43]

i v
* Zero in the first HW of an Internal Name

' 1st Internal Name indicates a new record or a carriage
' , : return

SO o~

t 2nd Internal Name

—_— et ek
1 s W P —

| S

n+5}
nt+6:
n+7 . nth Internal Name

n+8:
n+QJ:

*Standard External UDesignator and Internal Name 4 and 5 half word formats.
i | 3-149

APPLY PRESENT VALUE

!
o STANDARD HEADER

[%Intermediate Text Record Number
2 3?Record Type = 41

3 ?Continuation Code = 0

4 ;GOAL Statement Number

5 GOAL Statement Label

6 .Not Used

'.**'f********************************

} External Designator (Load Analog)

WM -

5| !
6

it

i
|

i
i
|
I
i
|
|
|
|

! !
T
|
|
I
|
i
|
i

External Designator (Sensor Analog)

fSténdard External Designator 4 half word format.

3-150

HW

L= TR & B T I

¥ k k k k k ok k ok k k Kk hkhkk ok k ok ok k ok khk kk ok k k hkkhk k ok hk kX

]

124 (Must be numeric or quantity list or table column)

*Standard External Designator and Internal Name 4 and § half word formats.

APPLY ANALOG STATEMENT
(List or Table Column)

STANDARD HEADER
Intermediate Text Record Number
Record Type = 42
Continuation Code = O
GOAL Statement Number
GOAL Statement Label
Not Used

2?} External Designator (Load Analog)

Internal Time Value Variable

5
6
g > (Zero in HW5 implies one time only)
9

Internal Name

3-151

APPLY ANALOG (Scalars)

HW STANDARD HEADER:

1 Intermediate Text Record Number
2 Record Type = 43

3 : Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

TRk kR kK Rk k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kk ok ok ok ok ok ok ok ok ok %

1
2
3

}Externa]Designator (Load Analog)
4

' Number of internal names (Ofnf]5). If n=0, then External Designator must
' be a subroutine.

E Ist Internal Name
10 | ' ' _

\ 2nd Internal Name

n+7 nth Internal Name

n+8
nt9

*Standard External Designator and Internal Name 4 and 5 half word formats.
Internal Names must be guantity or numeric scalar, list element or table

element. 3
3-152

SET PRESENT VALUE STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number
Record Type = 44
Continuation Code = O

GOAL Statement Number

T [T\ N

5 GOAL Statement Labe]
6 Not Used

"k ok khk ok k ok k hk k% Kk k ko k k k% k ok k ok ok ok kk ok k ok dk ok ok k ok k %

1
g}- Object External Designator (Load Discrete)
4

5
6

7

} Input External Designator (Sensor Discrete)
8 .

*Sténdard External Designator 4 half word formats.

3-153

SET EXTERNAL DESIGNATOR STATEMENT

HH STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 45
Continuation Code = @
GOAL Statement Number
GOAL Statement Label

(=] [3.2 R <4 w %]

Not Used

Tk ok ok ok ok ok Wk ok k kR R %k ok %k ko k k ok ok ok ok ok ok ok ok ok ok ok k% Kk

1
g}-Object External Designator

4%

g} iTime Value (0 if none specified)

‘Internal Name (must be a state list or table column)

—
—t 30 00 ™~

*Standard External Designator and Internal Name 4 and 5 half word formats.

3-154

SET DISCRETE (Scalars)

HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 46
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label

(=B & 3 B © T 7 B AL

Not Used

* k ok kK dk k Kk ok k ok k hk ok ok kkk k kkk kkkkk ok Kk hk Kk k kk kK
.
g}Object External Designator
4

Internal Time Value Variable
(HW5 is Zero if time not specified)

W00~ hon

10 Number of Internal Names (0Sn<15) If n=0, then External Designator
must be a subroutine type.

1

12

13 7 1st Internal Name

14

15

4
-~

16
17
18 » 2nd Internal Name
19
20

-

n+ll |

n+12

nt13 >

ntl14

n+15

*Standard External Designator and Internal Name 4 and 5 half word formats.
3-165

nth Internal Name

READ STATEMENT

HW STANDARD HEADER -

—

Intermediate Text Record Number
"Record Type = 47
‘Continuation Codé = 0

GOAL Statement Number

S T AR N

5 GOAL Statement Label

6 Not Used

"********************************ﬂ'**
‘?
|

T+ !

g}; External Designator
4J
|
5l
6] v
g | Internal Name
9 J
. |

fsthndard External Designator and Internal Name 4 and 5 half word formats.

3-156

AVERAGE STATEMENT

Hi || STANDARD HEADER
1 |Intermediate Text Record Number

Record Type = 48

‘Continuation Codé = 0

" GOAL Statement Number

I S R

5 GOAL Statement Label

6 Not Used

"**"It********************************

]
2} External Designator

5 \| Number of readings to average

Tt

*Sﬁandard External Designator and Internal Name 4 and 5 half word formats.

3-147

ISSUE DIGITAL PATTERN STATEMENT .
(Present Value of)

HH | STANDARD HEADER
1 ifIntermediate Text Record Number
;Record Type = 49
iContinuation Codé = 0

2

3

4 GOAL Statement Number
.5 GOAL Statement Label
6

Not Used

"***********************************

3

Ty
2} External Designator (Load)
47

5'\;
6 ' External Designator (Sensor)

*Standard External Designator 4 half word format.

3-158

ISSUE DIGITAL PATTERN STATEMENT
(List or Table Column)

HW STANDARD HEADER

|
] glntermediate Text Record Number
2 ERecord Type = 50
3 ?Continuation Code = p
4 GOAL Statement Number
5 GOAL Statement Label

re .

6 Not Used

EE R EEEEEEEEEE NI IS I I I I S
1

o]
3} External Designator (Load)
411
I
i

Internal Name (must be list or table column

Woo~~ho

*St?ndard External Designator and Internal Name 4 and 5 half word format.

1

3-159

ISSUE DIGITAL PATTERN (Scalars)
HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 51
3 Continuation Code = 0
4 GOAL Statement Number
5 GOAL Statement Label
6 Not Used
k Kk Ak k Kk k k k k k kk khkkE Kk k khk Kk k E Kk KAk Kk ok hk k ok Kk kK Kk hk kKR
] ,
2
3(External Designator (Load)
4
5 Number of Internal Names (0sn215) If n=0, then External Designator must
. be subroutine type. '
6
7
8} [Ist Internal Name (must be scalar, 1ist element or table element)
9
10}
1]
12
13} 2nd Internal Name
14
15
n;5
n+o
nt7% nth Internal Name
n+8
n+9

J

*Standard External Designator and Internal Name 4 and 5 half word format.

3-160

TIME PREFIX

W STANDARD HEADER

-—

Intermediate Text Record Number
2 Record Type = 52

3 Continuation Codé = ¢

4 GOAL Statement Number

5' GOAL Statement Label

& Not Uéed

" odk M % % W % K Kk ko d ok % % ok ok o ko k ok ok ok Kk ok ok W Rk %k Rk kR kK

1 [0
1

2 . Function Designator array number

After
When

3}
4 i te
50 Internal Name for Time Value

|
i

7

*Standard Internal Name 5 half word format.

3-161

HW

Lo A TR & & RN = S S B)

STOP STATEMENT

STANDARD HEADER
Intermediate Text Record Number
Record Type = 54
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label
Not Used

* ok ok ok ok ok ok ok Kk kK Kk ok ok ok k hk ok ok ok k k k ok ok k kK Kk kk k kK%

| 1 T |

4

n+2

Variable Sequence Number (HW1=0 if HW2=0)

Number of Entries (Restart Labels, 05ns10)
Ist Restart Label

2nd Restart Label

nth Restart Label

3-163

REQUEST KEYBOARD STATEMENT

HW STANDARD HEADER

1 Intermediate Text Record Number

2 Record Type = 55

3 Continuation Code = 0

4 GOAL Statement Number

5 GOAL Statement Label

6 Not Used

* k Kk k k k k Kk k k ok k ok ok k k kX Kk k ok ok ok ok ok k kK ok kk ok kk kA Kk Kk Kk

1 Function Designator Variable Number (Input Device)

Internal Name

Number of additional Internal Names {(0zns25)

9 *Zero in the Ist HW of an Internal Name
10 1st Internal Name indicates a new record or a carriage
11 return

15: 2nd Internal Name

n+7
n+8

n+9 nth Internal Name
n+l
11

*Standard Internal Name 5 half word format.

3-lod

| CONDITION PREFIX
! - {If/Then Variation)

i STANDARD HEADER -

—

gllntermediate Text Record Number
2 - Record Type = 56
3 :jContinuation Code = ¢
4 GOAL Statement Number
r.é' GOAL Statement Label
6 . Not Used
K *if I E R EEEEE S I N I I A

1

+. Comparison Test

1 ! .
*Standard Comparison Test 17 half word format.

3-T6b5

CONDITION PREFIX
(Verify)

HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 57
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label

o 1 A W N

Not Used

*k k kK k ok ok k kR A KR k kR KRk k ok ok kkxk Kk kR k Ak Kk Kh Kk Kk k%

1
é} Time Variable (Zero in none specified)

3 Else/Then Code

= Then
1 = Else
4
. Comparison_Test
20
21
.} Internal Time Value Variable
25

*Standard Comparison Test 17 half word format.

3-166

OUTPUT EXCEPTIONS

HW STANDARD HEADER

1 ? Intermediate Text Record Number

3

. Record Type =58

- Continuation Code = 0

re

GOAL Statement Label

2
3
4 - GOAL Statement Number
5
6

-~ Not Used

BRI E R R EEEEEEREERE R R R E R EE R
i
|

" Internal Name (Message List)
, Half words 1 thru 5 = 0 for Default Message

T

OO~ O e L PO =

}‘Externa] Designator {Output Device)

*Sthndard External Designator and Internal Name 4 and 5 half word format.

i

3-167

5 : PERFORM PROGRAM

HW | STANDARD HEADER

1 | Intermediate Text Record Number
Record Type = 59
Continuation Code = O

- GOAL Statement Number
GOAL Statement Label

o [41 S 4 w ra

: Chain 12 Reference Number

:**i*********************************

1st 4 characters of Program Name

A

[

Ist 4 characters of Revision Label (blank if none specified)

-

00~ O N) Py =

*

3-168

LET EQUAL STATEMENT

HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 60
Continuation Code = 0
GOAL Statement Number
GOAL Statement Label

Y O AW N

Not Used

* k k Kk k k Kk k Kk k k k ok ok x k ok ok hkk kk k kk ok k Kk kA ok ok ok k%

1
2
37 Internal Name
4
5
6 Number of Operators and Variables (1-n=55)
7 1st Operator
8 2nd Operator or 2nd Quantity/Number/Internal Name
n+6
nt+7
n+8; Last Quantity/Number/Internal Name
n+9
n+10

*Standard Internal Name & half word format will be used

*Operators require 1 HW and are defined as follows:
-1
-2
-3
-4
-5
-6
-7

B nnnn

o 1 e~

3-169

BEGIN SUBROUTINE

HW i STANDARD HEADER,
1 | Intermediate Text Record Number
j Record Type = 61

_ Continuation Code = 0

[4

GOAL Statement Number
GOAL Statement Label

[=)] ot (74 ry

_ Chain 12 Reference Number
Tk %ok k ko k k ko k ok ok ok % ok ok A Rk Rk ook R kR kW R AR R H Rk Wk
} 1st 4 characters of subroutine name

Internal Name
Function Designator

]
2
3
4
5 é Number of parameters (0snsi0)
6 : 1st Parameter type {?
L7 f%1st'parameter Variable Sequence Number
8 ﬁ 2nd’ parameter type
g ? 2nd parameter Variable Sequence Number
n+5 E;nth parameter type

6 ' nth parameter Variable Sequence Number

3-170

DECLARE TEXT TABLE

HW | STANDARD HEADER
] E Intermediate Text Record Number
_ Record Type = 62

Lontinuation Code = Q0 or 1

GOAL Statement Label

2
3
4 GOAL Statement Number
5
6

Not Used

'.**1*********************************
1 Variable Sequence Number
2 ; Number of Rows
3 | Number of Columns

4 | Number of Characters Per Entry

*A type 62 Intermediate Text Record must precede a group of type 63
Intermediate Text Records.

3-171

DECLARE TEXT TABLE

(Row Initialization)
HW STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 63
Continuation Code = O0-or 1 (1 if continuation of row)

2

3

4 GOAL Statement Number
5 GOAL Statement Label
6

Not Used

* k kK k ok ok ok ok k ok ok ok ok ok ok ok okhk khkohkok ok ok kAKX kK kK Kk ok k ok kXK

—

Variable Sequence Number

Z Row Number

3 1st Column Number This Entry
4

Last Column Number This Entry

51
: Text Data for 1st Column this row

y+] '

y+2, Text Data for Last Column This row
y+3 |

y+4

A type 62 Intermediate Text Record must precede a group of type 63 Intermediate
Text records. Each row requires a separate type 63 Intermediate Text Record.

3-172

[

DISABLE INTERRUPT

HW | STANDARD HEADER

1 | Intermediate Text Record Number
¢ Record Type = 64
i Continuation Code = 0

GOAL Statement Number

GOAL Statement Label

o or [4\] ~

Not Used

R E B EE R EEEE R R R R R R T T T
'

i

1 - Number of statements to be disabled
" 0 implies "disable all"
2 . 1st statement number to be disabled

3 i 2nd statement number to be disabled

nt] | Last statement number to be disabled

3-173

WHEN INTERRUPT STATEMENT

HW i STANDARD HEADER .
1 Intermediate Text Record Number
 Record Type = 65

Continuation Code = O

 GOAL Statement Number

- [71 [aN]

5 GOAL Statement Label
6 Not Used
'.**:*********************************
1 Variable Sequence Number
2 Variable Type

I
3! Variable Address

i
i
1
ii
* 1
|
i
i

3-174

GOAL STATEMENT

HW STANDARD HEADER
1 : Intermediate Text Record Number
" Record Type = 66

Continuation Code = Q

L]

2
3

4 GOAL Statement Number
5 GOAL Statement Label
6

Not Used

'.**l*********************************

1 Number of parameters (0snsiQ)

1st Parameter

oo

2nd Parameter

—
o L = OO 00~

n+1
n+é
n+3
nt+4
n+s

nth Parameter

*Standard External Designator or Internal Name 4 and 5 half word format.
Function Designator 1st half word will be -1. .

3-175

-

RESUME STATEMENT

HW STANDARD HEADER

1 ¢ Intermediate Text Record Number
5 Record Type = 67

Continuation Code = O

| GOAL Statement Number

TP W™

5 GOAL Statement Label

+
r

6 Not Used

Th I K ok ok ok K W % W ok ke d h ok ok %k Kk ko kA ok d ko ok ok ok oW ko

i 3-176

RETURN TO

HW

STANDARD HEADER
1 Intermediate Text Record Number
Record Type = 68

Continuation Code = O

LR

B — TR 7 R o

' GOAL Statement Number
5 GOAL Statement Labe)}
6 Not Used

LWOR R M R kA ok ok ok ok ok ok ok ok ok ok ok ok ok ok vk ok W W Y oW kK Kk Rk

1 0
-1+ integer

Perform Subroutine and return

1

Perform subroutine and return to this step number

*This Intermediate Text record type is found in conjunction with a type 65

Intermediate Text Record.

3-177

3.2.4 Chain Definitions

The Symbol Table used by the GOAL Compiler consists of ten separate tables
or chains. Each chain contains a unique type of symbol, i.e., internal
names, step numbers, etc. The number given to a chain is the location in
the symbol table of the pointer to the first entry of the chain. Each
entry of the chain has a pointer to the next entry. The last entry of
each chain points to a location in the table which contains a -1.

The chains are numbered 1 through 7 and 10 through 12. The locations that
would normally be used for chains 8 and 9 are reserved for special use.
Location 8 contains the -1 which is used by the chains to signify the last
entry.]Location 9 contains the pointer to the next available location in
the table.

The following pages contain a graphical description of the SYMTAB table,
the standard chain headers, and the format for each chain type.

3-178

SYMTAB TABLE FORMAT

The following is a representation of the SYMTAB table before any entries
have been added to the chains.

SYMTAB
LOCATION CONTENTS CHAIN TYPE
1 8 Internal Names
2 8 Statement Labels
3 8 Function Designators
4 8 Abbreviations (replace Statement)
5 8 Data Bank Names
& 8 MACRO Names
7 8 MACRQO Parameterﬁ
8 -1 -1
9 13 Next Avajlable Location
10 8 Subroutine Names
11 8 Statement Labels (special usage)
12 : 8 Subroutine/Program Names
13 h
> Chain Entries
! J

3-179

CHAIN HEADER FORMAT

Each chain has a standard header which precedes the variable data associated
with each individual chain. The standard header is as follows:

Hi# CONTENTS DEFINITION

1 n \ Number of characters in locations
2 1st Character 2 through m

Symbol variable for each type of chain

m nth Character
Forward N : . .
mt 1 Pointer Pointer to next entry in the chain
Definition .
m+2 Number Expanded source statement listing number
Reference] _
3 Count Number of times the variable has been

referenced

3-180

CHAIN 1.

STANDARD
HEADER

INTERNAL NAMES

CHAR 1

CHAR N

3-18]

CHARACTER COUNT
INTERNAL NAME

FORWARD POINTER
DEFINITION NUMBER

REFERENCE COUNT

VARIABLE SEQUENCE NUMBER
TYPE
NUMBER OF ROWS

NUMBER OF COLUMNS
MAXIMUM NUMBER OF CHARACTERS

COLUMN POINTERS

ROW POINTERS

*This entry is included
only with Type 12 data.

CHAIN 2.

STANDARD
HEADER

STATEMENT LABELS

-

3-18¢

CHARACTER COUNT
STATEMENT LABEL
FORWARD POINTER
DEFINITION NUMBER
REFERENCE COUNT
STATEMENT TYPE

CHAIN 3.

STANDARD
HEADER

FUNCTION DESIGNATOR

/-

N

CHAR 1

CHAR N

1-8

3-183

CHARACTER COUNT

FUNCTION DESIGNATOR

FORWARD PQINTER
DEFINITION NUMBER
REFERENCE COUNT
TYPE

ADDRESS

DATA BANK NUMBER

"CHAIN 4., ABBREVIATIONS (REPLACEMENTS)

STANDARD
HEADER

(

CHAR 1

CHAR N

CHAR 1

CHAR X

3-184

CHARACTER COUNT
NAME, FUNCTION

DESIGNATOR OR TEXT TO
BE REPLACED

FORWARD POINTER
DEFINITION NUMBER
REFERENCE COUNT
CHARACTER COUNT

REPLACEMENT NAME,
FUNCTION DESIGNATOR

OR TEXT

CHAIN 5.

STANDARD
-HEADER

DATA BANK NAMES

-~

CHAR 1

CHAR X

3-18»

CHARACTER COUNT

DATA BANK NAME

FORWARD POINTER
DEFINITION NUMBER
REFERENCE COUNT
DATA BANK NUMBER
CHARACTER COUNT

REVISION LABEL

'CHAIN 6. MACRO LABELS

N CHARACTER COUNT
CHAR 1)
) MACRO LABEL
STANDARD)
HEADER CHAR N

FORWARD POINTER

DEFINITION NUMBER

1-10 NUMBER OF PARAMETERS

NUMBER OF FIRST RECORD IN MACRO FILE

NUMBER OF LAST RECORD IN MACRO FILE

3-186

CHAIN 7.

STANDARD
HEADER

MACRO PARAMETERS

CHAR 1

CHAR N

3-187

CHARACTER COUNT

MACRO PARAMETER

FORWARD POINTER
PARAMETER NUMBER
REFERENCE COUNT

CHAIN 170. SUBROUTINES NAMES

N " CHARACTER COUNT

CHAR 1

P SUBROUTINE NAME

STANDARD CHAR N
HEADER

FORWARD POINTER
DEFINITION NUMBER

REFERENCE COUNT

VARIABLE SEQUENCE NUMBER

3-188

 CHAIN 11. STATEMENT LABELS TO BE VALIDATED

1 CHARACTER COUNT

STATEMENT LABEL

STANDARD FORWARD POINTER
HEADER A 0

DEFINITION NUMBER

REFERENCE COUNT

0 OR 36 RELEASE STATEMENT TYPE CODE

0 OR 65 DISABLE STATEMENT TYPE CODE

3-189

CHAIN 12, PROGRAM/ SUBROUTINE NAME

~
N CHARACTER COUNT
-
CHAR 1
' L PROGRAM OR SUBROUTINE NAME
STﬁﬁgﬁﬁg) CHAR N 3
FORWARD POINTER
DEFINITION NUMBER
REFERENCE COUNT
p

3-190

3.2.5 Common Definitions

GOAL routines use ‘common’' storage locations for passing data between GOAL
mainline routines, action routines, and data bank maintenance routines.
This section gives the relative order of 'common' locations within each
'common block' and describes briefly each 'common' location.

COMMON_BLOCK

BLANK COMMON

coMsg7
COMS17
CoMS22
COMS44
COMS48

COMs49
COMS51
DBCM
DBFWIN
DBHWIN
DBNKNM
DSCOM

INPCOM
INTTXT
LMBUF

COMMON LOCATIONS

COMBLK, STXMAX, STMMAX, SYMMAX, STPMAX, K, RC,
£, ROOT, STMTK, LASTK, ENDK, STMTNO, STPNO,
INREC, SEQFLD, ENDFLG, FDFLG, SYMFLG, LBLFLG,
DGFLG, SRFLG, EXFLG, RECCNT, RECIST, SRLNCT,
SRPGCT, ERRCTR, EXLNSZ, EXPGCT, EXPGSZ, EXLNCT,
ERRTAB, DATE, PRTLNE, TITLE, CHRTAB, ACTCOM,
TLNOER, XRFFLG, TXTFLG, CTLFLG.

PARMCT, PARTYP, TEXPT, SAVCC, STYPE, NAMSV4,
FDCTR, TYPPT, FDCHK, FDTPPT, FDPKU, EXSUBR.
CMCNT, IHDBN.

ELSSVE, PNCHFG

AFTRWN, EDAFN, RTHR, INCNT, OPCNT, LBPNT, VART,
ILNG, ELSTHN, DPR, OUTEX

TYPPT, SUB, FDCHK, FDROWS, COLSUB

CONVRT

MBLOCK, DBLOCK, DBREC, PREC, MLO, MMID, MHI
DBFWIN

DBHWIN

DBNKNM

TLNOWR, UNRFNM, UNRFSN, UNDFNM, UNDFSN, UNDFFD,
RFDSWI, RFRLCC

LTFLG, ABBRFG
TXTRCD
LMBUF

3-191

COMMON BLOCK COMMON_ LOCATIONS

LVECOM - LVEFLG
MACCOM - - MACFLG, FLSHFG, MEXPFG, EXPDFG, EXECFG, LSTREC,
NXTMAX, RLOTFG, FSTREC, NXTMAC, PLSTAB

PRECOM - | PREFLG

REPEAT - REPEAT

STMTAB - STMTAB

STPTAB - STPTAB

STXTAB - STXTAB

SUBCOM - %HETXT, J, SUBFLG, SUBCNT, SVPRCC, STPSVB, STPFLG, Q,
SYMTAB - SYMTAB

Brief description of 'common' locations:

ABBRFG

Halfword - integer in labeled common /INPCOM/. Used by INPUT to
indicate that an abbreviation is being processed.

ACTCOM - Array of 200 halfwords in blank common. Symbolic names used for
communication between 'action' routines are equivalenced to posi-
tions in ACTCOM.

AFTRWN - Halfword integer in labeled common /COMS48/. Used as a flag to
indicate whether SUB48 is processing the 'AFTER' or 'WHEN' option
of the time prefix. AFTRWN = O indicates the 'AFTER' option;
AFTRWN = 1 indicates 'WHEN'.

ALPHA - Array of 26 halfwords beginning at CHRTAB (11} in blank common.
Used as a table to contain the 26 alphabetic characters.

BEGINP - Halfword integer equivalenced to ACTCOM (95). It is initialized
to zero in GINIT. It is set to 1 in SUBO6 to indicate that a
'Program' is being compiled.

BEGINS - Halfword integer equivalenced to ACTCOM (94). It is initialized
to zero in GINIT. It is set to 1 in SUBO7 to indicate that a
'Subroutine' is being compiled.

BVAL

Fullword integer equivalenced to ACTCOM (3). It is used to contain
the integer value, (binary value), of numeric type fields used in
GOAL statements. It is computed and set in ACTION.

3-192

Array of 80 halfword integers in blank common. List of 80 char-
acters used to contain the GOAL character set. It is loaded from
the syntax file by GINIT. CHRTAB is used by all 'ACTION' routines
that test characters in the GOAL source statements.

CHRTAB

CLABEL

Halfword integer equivalenced to ACTCOM (61). It is used to con-
tain the integer value of the numeric field of a statement label.

CLFW

Fuliword integer equivalenced to DBFWIN (11) in labeled common
/DBFWIN/. CLFW is equal to zero, and is used to insure that
there will be a zero Tocation following the data bank sequence
numbers.

CLHW Halfword integer equivalenced to DBHWIN (11) in labeled common
/DBHWIN/. CLHW is equal to zero, and is used to insure that
there will be a zero location following the pointers into the

data bank sequence table.

CMCNT

1. Halfword integer in labeled common /COMS22/. Used by SUB22 to
count the number of commas in a GOAL statement.

2. Halfword integer equivalenced to ACTCOM (184). It is used as
a counter for initial values in DECLARE LIST/TABLE statements.

CNT - Halfword integer equivalenced to ACTCOM (9). It is used as a
utility counter in action routines.

CNVRT Fullword integer equivalenced to ACTCOM (53). It is used as a

control word in converting numeric fields to actual values.

CoLSuB

Halfword integer in labeled common /COMS49/. Used by SUB49 to
contain the number of columns in a table.

COMBLK Halfword integer used to insure proper boundary alignment in

blank common.

Halfword integer equivalenced to LMBUF (18). Used by SUB48 to indicate

whether the 'IF' or 'VERIFY' option of the 'VERIFY' prefix is being

processed. CONDIF = 1 indicates the 'IF' option; CONDIF = O indicates
- '"VERIFY'.

CONDIF

CONTC Halfword integer equivalenced to HEADER (3) in labeled common /INTTXT/.

Used as a continuation flag in intermediate text records.

CONVRT

Halfword integer in labeled common /COMS51/. Used as a flag by the
Compiler Directives subroutine SUB44. When CONVRT is set to one,
SUB51 will substitute GOAL words and phrases for a short form
dialect.

3-193

CTLFLG

DATAPT

DATE

DBFWIN

DBHWIN

DBINT

DBLOCK

DBNKNM

DBNUM

DBREC

DBUSE

DGFLG

Halfword integer in blank common. Used as a flag to indicate to
EXLIST that the statement in the buffer is a compiler directive,
and it is not to be printed. CTLFLG is set by SUB44.

Halfword integer equivalenced to ACTCOM (200). It is used to save
a pointer to the 'table name functions' entry in SYMTAB. It is
set by SUB17.

Array of 8 halfword integers in blank common. Used to contain the
'date' field printed in the EXPANDED SOURCE listing. This array

is set to 'blanks' in GINIT. It may be modified by compiler direc-
tive in SUB44.

Array of 11 fullwords in labeled common /DBFWIN/. Used as a table
to contain the data bank numbers which are in use.

Array of 12 halfwords in labeled common /DBHWIN/. Used as a tabie
to contain pointers into table DBFWIN. This table determines the
sequence which will be used to look up entries in data banks when
more than one data bank is in use.

Halfword integer equivalenced to DBNKNM (1) in labeled common
/DBNKNM/. DBINT is the integer length of the data bank name
contained in DBNKNM. It is also the first character of the data
bank name. :

Array of 383 fullwords in labeled common /DBCM/. Used by data bank
maintenance routines for upper and lower level directory blocks.

Array of 34 halfwords in labeled common /DBNKNM/. Used by SUB22,
SUB42, and FDLKUP to contain the data bank name.

Halfword integer equivé]enced to DBHWIN (12). Used to count the
total number of data banks that have been requested by 'USE data
bank' statements.

Array of 43 fullword integers in labeled ¢ommon /DBCM/. Used to
contain a record from the data bank.

" Halfword integer equivalenced to ACTCOM (199). It is used to

indicate the number of DATA BANKS in use. It is initialized to
zero in GINIT. It is updated in SUB42 and SUB22.

Halfword integer in blank common. Used as a control word to enable
generation of the Diagnostic Summary listing. It is set to 1 (en-
abled) in GINIT, It may be modified via compiler directive in SUB44,
It is set to 2ero to inhibit generation of the listing.

3-194

DIGIT

DIMTYP

DPLY

DPNT

DPR

ELSSVE

ELSTHN

ENDFLG

ENDK

ENTCNT

1

Array of 10 halfwords beginning at CHRTAB (1) in blank common.
Used as a table to contain the numeric digits 1 through 9 and
zero.

Halfword integer equivalenced to ACTCOM (98). It is used as a
counter to determine the engineering units code. It is set to
1 by ACTION routine #18. It is incremented by 1 in ACTION
routine #52. When the units field is recognized by the PARSER,
DIMTYP contains the correct code.

Halfword integer equivalenced to ACTCOM (44). Contains the
FORTV variable number representing the internal name for the
DISPLAY option when processing 'OUTPUT EXCEPTION'.

Halfword integer equivalenced to ACTCOM (187). It is used to
contain the (number of columns) x 2 + 3 for DECLARE tables.

Halfword integer in labeled common /COMS48/. It is used by
SUB48 when processing the 'OUTPUT EXCEPTION' to indicate
whether the 'DISPLAY', 'PRINT', or 'RECORD' option was speci-
fied. DPR = 0 indicates 'DISPLAY, DPR = 1 indicates 'PRINT',
and DPR = 2 indicates 'RECORD'.

Halfword integer in labeled common /COMS44/. It is used to save
the expanded listing 1ine size when entering the 'PUNCH' mode.
When Teaving the 'PUNCH' mode, the Tine size is restored to the
value in ELSSVE.

Halfword integer in labelled common /COMS48/. It is used to indicate
which option of the 'VERIFY' prefix is being processed. ELSTHN = 0
indicates 'THEN' (or comma) option; ELSTHN = 1 indicates 'ELSE QUTPUT
EXCEPTION'; ELSTHN = 2 indicates 'ELSE'; and ELSTHN = 3 indicates
semicolon (;).

Halfword integer in blank common. It is the flag used to indicate

that the parsing phase of the GOAL compilation is compiete. It is

set to 1 when the program 'END' statement is parsed. This cues the
compiler to generate compilation summary listings.

Halfword integer in blank common. It is a pointer containing the sub-
script of the last significant character of the GOAL statement being
parsed. It is set when the semicolon (;) is found., If the parse
fails, it is set by FIXUP.

Halfword integer equiva]enced'to ACTCOM (185). It is used to save
the specified number of entries in DECLARE LIST/TABLE.

3-19%

ERRCTR

ERRTAB

EXECFG

EXFLG

EXLNCT

EXLNSZ

EXPDFG

EXPGCT

EXPGS2

EXSUBR

Halfword integer in blank common. It is a counter containing the
number of errors detected in the current GOAL statement. It is
incremented by one each time ERROR is called and is reset by EXLIST
for each GOAL statement.

Array of 15 halfword integers in blank common. It is a list of 15
pointers containing the positions of errors identified in STMTAB.
ERRCTR contains the number of entries in ERRTAB for the current
GOAL statement. ERRTAB is updated by the routine, ERROR.

Halfword integer in labeled common /MACCOM/. Used as a flag to
signify 'EXECUTE Only' statement. It is set to 1 in SUBP4 if an
'"EXECUTE Only' statement is encountered.

Halfword integer in blank common. Used as a control word to enable
eneration of the Expanded Source Record listing. It is set to 1,
?enabled), in GINIT. It may be modified via compiler directive in
sSuB44, .

Halfword integer in blank common. Used as a counter to contain the
number of lines used on the current page of the Expanded Source
Listing. It is set to 50 in GINIT. It is incremented by 1 before
each line is printed in EXLIST. When EXLNCT exceeds EXPGSZ, a new
page is started and EXLNCT is reset to zero.

Halfword integer in blank common. Used as a control word to con-
tain the number of GOAL statement characters per line in the
Expanded Source Listing. It is set to 100 in GINIT. It may be
modified via compiler directive in SUB44.

Halfword integer in labeled common /MACCOM/. Used as a flag to
signify 'EXPAND' only statement was found. EXPDFG is set to one
in SUB21 if an 'EXPAND' only statement is found.

Halfword integer in blank common. Used as a counter to contain the
number of pages generated in the Expanded Source listing. It is
incremented by EXLIST each time a new page is started. It may be
modified via compiler directive in SUB44.

' Haffword integer in blank common. Used as a control word to con-

tain the number of lines per page on the Expanded Source listing.
It is set to 50 in GINIT and may be modified via compiler direc-
tive in SUB44.

Halfword integer in labeled common JCOMS17/. Used as a flag to

indicate whether 'function designator' or 'table name functions'
of an external designator is being processed.

3-196

EXTDES

FDAFN

FDCHK

FOCNT

FDCTR

FDFLG

FOFND

FDPKU

FDROWS

FOTPPT

FLSHFG

FORTV

Array of 4 halfword integers equivalenced to ACTCOM (195). This
array contains the 'standard' representation for 'external desig-
nator'.

Halfword integer in labeled common /COMS48/. Contains the FORTY
variable name assigned to a function designator.

Halfword integer in labeled common /COMS17/ and /COMS49/. Used as
a variable subscript for accessing in SYMTAB function designators
which are row names of a table.

Halfword integer equivalenced to ACTCOM (62). It is used to con-
tain the number of characters stored in NAMEBF for function desig-
nators. It is updated in ACTICN.

Half integer in labeled common /COMS17/. Used by SUB17 to contain
the number of function designators contained within an external
designator.

Halfword integer in blank common. Control word used to enable
generation of the function designator cross-reference listing.
It is initialized to 1 in GINIT (enabled). It may be modified
via compiler directive in SUB44.

Halfword integer equivaienced to ACTCOM (18%). It is used to
indicate if a 'function designator' was found in action #20. It
is set in ACTION.

Halfword integer in labeled common /COMS17/. Used as a variable
subscript to access the FORTV name of a function designator.

Halfword integer in labeled common /COMS49/. Used by SUB49 to
indicate the number of rows in a table.

Halfword integer in labeled common /COMS17/. Used by SUB17 to
indicate type of function designator which was accessed from
SYMTAB by the variable subscript TYPPT.

Halfword integer in labeled common /MACCOM/. Used by SUB@5 to
cause the macro body to be flushed following an error in the
'BEGIN MACRO' statement. A search for the 'END MACRO' statement
is made disregarding all intermediate data. When found, all
flags are cleared and processing continues normally.

Halfword integer equivalenced to ACTCOM (60). It is used as a
counter to determine the internal identification sequence number
assigned to internal names which are explicitly or implicitly
defined in the GOAL program. FORTV js initialized to zero in GINIT.

3-197

FRSTP

Halfword integer equivalenced to REPEAT (204) in labeled common
/REPEAT/. Contains first step number to be repeated in a
‘REPEAT' statement.

Fuliword integer in labelled common /MACCOM/. Used as a counter
for the next record to be read during macro expansion. It is
set to the first record number of a macro body in SUB21 when an
'"EXPAND AND/OR EXECUTE' statement is encountered. It is used in
INPUT as a relative record number in a direct access 'WRITE'
statement which requires a fullword integer. It is incremented
after each '"READ®' in INPUT. It is checked against LSTREC before
each 'READ' in INPUT to determine the end of the macro body.

FSTREC

FVAL

Fullword floating point variable equivalenced to ACTCOM (55). It
is used to contain the floating point value for numeric fields
processed in GOAL statements.

FVALT

Fullword floating point variable equivalenced to ACTCOM (57). It
is used for temporary storage of FVAL.

Array of 200 fulliword integers in labeled common /INTTXT/ used to
assemble the 'data’' portion of intermediate text records. FWTEXT
is equivalenced to TXTRCD (7).

FWTEXT

GTOFLG

Halfword integer equivalenced to ACTCOM (97). It is initialized
to zero in GINIT. It is incremented by 1 in SUB23 toc indicate
that a GO TO statement had been found. It is subsequently tested
to insure that the following statement has a label.

HEADER

Array of 6 halfword integers in labeled common /INTTXT/. HEADER
is equivalenced to TXTRCD (1). It is used to assemble the stan-
dard 6 word header of the intermediate text records.

HWTEXT

Array of 400 halfword integers equivalenced to TXTRCD (7). Used
to assemble the 'data' portion of intermediate text records.

IHDBN

Halfword integer in labeled common /COMS22/ used to store the
sequence number of data bank numbers assigned in table DBHWIN.

ILNG

Halfword integer in labeled common /COMS48/ used by SUB48 to contain
the length of intermediate text.

INCNT

Halfword integer in labeled common /COMS48/ used to indicate
whether an external designator and associated names of a limit
test have been placed into the output buffer. It points to the
next five word array within that buffer into which the names
will be moved. It also insures that no more than three names
are to be moved.

3-198

INREC

INTCOL

INTLNG

INTNME

INTRNM

INTROW -

INTTYP

Array of 80 halfword integers in blank common. INREC is the input
buffer for GOAL source statements. It is loaded in routine INPUT
from input stream or macro file. It is used to generate the source
record listing in SRLIST. Characters are moved from INREC to
STMTAB for parsing.

Halfword integer equivalenced to ACTCOM (193). It is used to contain
the 'column' code for the current 'internal name'.

Halfword integer equivalenced to ACTCOM (194). It is used to contain
the 'length' code for the current 'internal name'.

Halfword integer equivalenced to ACTCOM (191). It is used to contain
the internal identification number for the current 'internal name.'

ARRAY of 5 halfword integers equivalenced at ACTCOM (190). This
array contains the following variables:

INTTYP - ACTCOM (190)
INTNME - ACTCOM (191)
INTROW - ACTCOM (192)
INTCOL - ACTCOM (193)
INTLNG - ACTCOM (194)

It is used to assemble the 'standard' representation of the 'internal
name. '

Halfword integer equivalenced to ACTCOM (192). It is used to contain
the 'row' code for the current 'internal name'.

Halfword integer equivalenced to ACTCOM (190). It is used to contain
the 'type' code for the current 'internal name'.

Halfword integer in labeled common /SUBCOM/. PARSER uses this as a
pointer in STXTAB to the header of the syntax equation being parsed.
In SUB26 this same common location is called MARKER.

Halfword integer in blank common used as a pointer to contain the

_ subscript of the current character pos1t1on in STMTAB for the state-

ment being parsed. It is initialized in PREP prior to parsing and
it is updated by the PARSER and any 'action' routines that process
the statement. K must be saved and restored by action routines that
fail (RC # 0}.

3-199

KSAVE

LASTK

LASTP

LBLFLG

LBPNT

LMBUF

LNG -

LOPCTR

LSTREC

LTFLG

LLVEFLG

Halfword integer equivalenced to ACTCOM (8). It is used to save
current vajue of K at entry to ACTION. '

Halfword integer in blank common used as a pointer to contain the
subscript of the word in STMTAB immediately following the last
character loaded with current data. LASTK is updated by INPUT.

It is tested, as required, to insure that data in STMTAB is current.

Halfword integer equivalenced to REPEAT (205) in labeled common
/REPEAT/. Contains last step number to be repeated in a 'REPEAT’
statement.

Halfword integer in blank common used as a control word to enabie
generation of the statement label cross-reference listing. It is
set to one (enabled) in GINIT. It may be modified via compiler
directive in SUB44. It is set to zero to inhibit generation of
the listing. '

Halfword integer in labeled common /COMS48/ used'by SUB48 as a
pointer to the next entry in LMBUF.

Array of 18 halfwords in labeled common /LMBUF/ used by SUB48 to
contain FORTY names assigned to quantities used for limit testing.

Halfword integer equivalenced to ACTCOM (59). It is used to con-
tain field lengths during processing in ACTION.

Halfword integer equivalent to REPEAT (206) in labeled common
/REPEAT/. Used as a counter to contain the number of times
steps are to be repeated in a 'REPEAT' statement.

Halfword integer in labeled common /MACCOM/ used to contain the

~ last record number of a macro body. It is set in SUB21 after an

'EXPAND AND/OR EXECUTE' macro statement has been found. It is
tested in INPUT to determine if the entire macro body has been
used as input to the compiler.

Halfword integer in labeled common /INPCOM/. Used by INPUT to
indicate that a character string began with a 'less than' symbol
(<) and therefore should close with a ‘greater than' (>) symbol
rather than 'close parenthesis'.

Halfword integer in labeled common /LVECOM/ which is set to one
when a 'LEAVE' statement is encountered. This causes all data
following the 'LEAVE' statement to be ignored until a "RESUME'
statement is parsed. When the 'RESUME' statement is parsed LVEFLG
is set to zero.

3-200

MACFLG - Halfword integer in labeled common /MACCOM/ used as a flag for
'BEGIN MACRO' statement in EXLIST. Can have value of 0, 1, or
2.

0 - implies no macro being processed
continue normally

1 - implies record being processed is in macro body and
should be written in macro file

2 - implies 'BEGIN MACRO' statement has been found and
macro body follows.

This flag is initialized to zero in GINIT. It is set to two in
SUB@5 and reset to 1 in EXLIST. It is cleared to zero in SUBPS
when an 'END MACRO' statement is found.

MARKER - Halfword integer in labeled common /SUBCOM/ used by SUBZ6 as a)
pointer to the header in STXTAB of the syntax equation being parsed.
PARSER calls this same common location J.

MBLOCK - Array of 383 fullword integers in labeled common /DBCM/ used by the
data bank maintenance routines for the master data bank directory
block.

MEXPFG - Halfword integer in labeled common /MACCOM/ used as a flag to
signify 'macro expansion mode' is in effect. This means that
an 'EXPAND AND/OR EXECUTE' statement was encountered and input
records to the compiler should come from the body of the pre-
viously defined macro with the same name. This flag is set to
1 in SUB21 when statement is encountered. It is checked in
EXLIST to determine if EXECFG and EXPDFG should be checked
for printing purposes. It is also checked in INPUT to see if
records should come from the macro file or the input stream.
It is cleared in INPUT when the entire macro has been used as
input to the compiler.

MHI - Halfword integer in labeled common /DBCM/ used by data bank
maintenance routines during search of the directory.

MLO - Halfword integer in labeled common /DBCM/ used by data bank
maintenance routines during search of the directory.

MMID - Halfword integer in labeled common /DCBM/ used by data bank
maintenance routines during search of the directory.

3-201

NAMCNT - Halfword integer equivalenced to ACTCOM (63). It is used to
contain the number of characters stored in NAMEBF for 'names'.
It is updated in ACTION.

NAMEBF - Array of 32 halfword integers used to assemble the characters
of a 'name' used in GOAL statements. The number of characters
used is contained in NAMCNT. NAMEBF is equivalenced to (starts
at) ACTCOM (10) and uses consecutive locations.

NAMSY4 - Array of 4 halfwords in labeled common /COMS@7/ used by SUB@7
to save the first 4 digits of a name in NAMEBF.

NCR - Halfword integer equivalenced to ACTCOM (5). It is used to con-
tain the most recent significant character found by NEXTCR. It
is set in NEXTCR, (NCR = STMTAB (K-1)) on return.

NMFLD - Halfword integer equivalenced to ACTCOM {(183). It is used to
contain the position of the beginning of a 'name' field in
STMTAB. It is set in ACTION.

NMFND - Halfword integer equivalenced to ACTCOM (188). It is used to
indicate if a 'name' was found in action #29. It is set in
ACTION.

NUMBUF - Array of 32 halfword integers equivalenced to ACTCOM (66) and

occupying sequential Tocatijons. It is used to contain the
characters of numeric fields.

NUMCNT - Halfword integer equivalenced to ACTCOM {64). It is used to con-
tain the number of characters stored in NUMBUF for numeric fields.
It is updated in ACTION.

NXTMAC

Fullword integer in labeled common /MACCOM/ used as a counter for
the next available record in the macro file when creating a macro.
It is initialized to 11 in GINIT. Each time a macro body record
is written into the file, it is incremented by 1. It is used in
EXLIST as a counter and as a relative record number in a direct
access 'WRITE' statement which requires a fullword integer.

NXTMAX

Halfword integer in labeled common /MACCOM/ which contains the
maximum record number allowable in the macro file. It is ini-
tialized to 1000 in GINIT. It is tested in EXLIST when macro body
records are written in the macro file. If an attempt is made to
exceed this maximum, a call to SYSERR with a parameter of 6 is
made. This terminates the compiler.

3-202

OPCNT

OUTEX

PARMCNT

PARTYP

PLSTAB

PNCHFG

PREC

PREFLG

PRNT

PROCFG

PRTLNE

Halfword integer in labeled common /COMS48/ which contains a
number that represents the type of relational test in a condition
prefix.

Array of 10 halfwords in labeled common /COMS48/. Contains vari-
ables which control displaying, printing, or recording of the
'"OUTPUT EXCEPTIONS' option of the condition prefix.

Halfword integer in labeled common /COMSP7/ used by SUB@7 to indi-
cate the number of parameters passed to a subroutine in a 'BEGIN
SUBROUTINE' statement.

Halfword integer in labeled common /COMS@7/ used by SUBP7 to
indicate type of parameter passed in a 'BEGIN SUBROUTINE'
statement. PARTYP = 1 indicates a function designator; PARTYP =
0 indicates an internal name.

Array of 51 halfwords in Tabeled common /MACCOM/. PLSTAB parallels
STPTAB. It is set by INPUT to mark for EXLIST which statements
should have a plus sign (+) signifying macro expansion.

Halfword integer in labeled common /COMS44/ which signifies that
'PUNCH' has been specified in a compiler directive. The line
size is reduced to 80, and a deck is output. This flag is tested
by EXLIST.

Fullword integer in labeled common /DBCM/ which is used by the data
bank maintenance routines in a search of the data bank directory.

Halfword integer in labeled common /PRECOM/. It is set by SUBS2
when data bank input is being preprocessed. It is tested by
SUBP5. If PREFLG = 1, SUB@5 outputs processed macros with data
bank input rather than writing them to the macro file.

Halfword integer equivalanced to ACTCOM (45). Contains the FORTV
variable number representing the internal name for the PRINT
option when processing ‘OUTPUT EXCEPTION'.

Halfword integer equivalenced to ACTCOM (96). PROCFG = 1 indi-
cates the first procedural statement has been encountered. EXLIST
prints the message

**********BEGIN OPERATING STEPS*¥akkdkdkk

Array of 130 halfword integers in biank common. Buffer of 130
characters used to assembie the print line in EXLIST. The first
100 characters are set to blanks in GINIT. It is subsequently
cleared in EXLIST after printing each line.

3-203

QTYPE

RC

RECCNT

RECD

RECIST

REPEAT

REPTEN

RFDWSI

RFLCC

RLOTFG

Halfword integer in Tabeled common /SUBCOM/ which contains

the syntax table number from the input source deck control
card, It is used by GINIT to load the correct syntax
table.

Halfword integer in blank common equivalenced to ACTCOM (99).
Control word used to indicate if a 'quantity' type name has
been assigned engineering units. It is updated in ACTION.

Halfword integer in blank common used as a flag to indicate
success or failure in parsing elements of GOAL statements.

It is set by PARSER and/or 'action' routines. It is used by
PARSER in finding successful paths through the syntax tables.

RC = 0 implies 'successful'
RC = -1 implies 'try alternate' or 'error'
RC > 0 implies 'error', RC = error number

Halfword integer in blank common used as a counter to contain
the number of the current source record. It is set to zero in
GINIT. It is incremented by 1 in SRLIST for each record proc-
essed from the GOAL source input stream.

Halfword integer equivalenced to ACTCOM (46)}. Contains the
FORTV variable number representing the internal name for the
RECORD option when processing 'OUTPUT EXCEPTION'.

Halfword integer in blank common used as a control word to con-
tain the source record number for the first record of the current
GOAL statement. It is set to RECCNT in PARSER.

Array of 208 halfword integers in labeled common /REPEAT/. Con-

sists of 8 working locations followed by 100 two-halfword entries
containing the last step number in the loop and the FORTY name of
the loop for all 'REPEAT' statements referenced in a program.

Halfword integer equivalenced to REPEAT (203) which contains the
number of table entries in REPEAT.

Halfword integer in labeled common /DSCOM/ used by DIAGSM to
indicate the total number of step numbers referenced on a
DISABLE statement but not defined on a WHEN INTERRUPT state-
ment.,

- Halfword integer in labeled common /DSCOM/ used by DIAGSM to

indicate the total number of step numbers referenced on a
RELEASE statement but not defined on a CONCURRENT statement.

Halfword integer in labeled common /MACCOM/ used as a flag for
statement table roll-out. It is set to 1 in SUBZ21 when an
"EXPAND AND/OR EXECUTE' macro statement is encountered. It is
checked in RESET to determine 1if the statement table should be
saved. If it is on, the statement table is temporarily written
to disk so a macro body can be processed and normal processing
can continue following the macro expansion. It is set to zero
following roll-out in RESET.

3-204

Array of 200 fullword floating point wofds equivalenced to
TXTRCD (7) in labeled common /INTTXT/. Used to assemble the
'data' portion of intermediate text records.

RLTXT

ROOT Halfword integer in blank common used as a pointer to contain

' the subscript of the 'root' syntactical element control block
in STXTAB. ROOT is initialized when the syntax table is loaded
in GINIT. It is used by PARSER to locate the starting point in

the syntax table for parsing each GOAL statement.
RPNAM

Halfword integer eguivalenced to REPEAT (207). Contains the
FORTY variable name assigned to the repeat loop.

RTHR

Halfword integer in labeled common /COMS48/ used as a return
parameter to allow common coding to be used in a subroutine.
It is used as the parameter in a 'computed GO TO' following
the shared coding.

SAVCC Haifword integer in labeled common /COMS@7/ used by SUB@7 to

save the completion code from LOOKUP.

SEQFLD - Halfword integer in blank common used as a control word to
' contain the number of columns reserved for sequencing data on
the input source records. The sequencing field is the right-
most portion of the input record. SEQFLD is initialized to
zero in GINIT and may be modified via compiler directive in
SUB44.

SPCHAR - Array of 21 halfwords starting at CHRTAB (37) used as a table
to contain the GOAL special characters.

SRFLG - Halfword integer in blank common used as a control word to
enable generation of the source record listing. It is set to
1 (enabled) in GINIT. It may be modified via compiler direc-
tive in SUB44.

SRLNCT - Halfword integer in blank common used as a counter to contain
the number of lines contained in the current page of the
source record listing. It is initialized to 50 in GINIT. It
is incremented by 1 before each line is printed, If greater
than 50, a new page is generated.

SRPGCT - Halfword integer in blank common used as a counter to contain
the number of pages generated in the source record Tisting.
It is set to zero in GINIT and is incremented by 1 in SRLIST
each time a new page is started.

3-205

STATE

STATOF

STATON

STMLBL

STMMAX

STMTAB

STMTK

STMTNO

STOFF

STONN

STPFLG

STPMAX

Halfword integer equivalenced to ACTCOM (6). It is used to
contain the status of logical type fields used in GOAL state-
ments. It is computed and set in ACTION. '

Same as STOFF.
Same as STONN.

Array of 5 halfword integers used to assemble the digit char-
acters of a GOAL statement label. It is equivalenced to
ACTCOM (48).

Halfword integer in blank common which contains the system
limit of the size of SYMTAB. It is set to 3501 in GINIT,

Array of 3500 halfword integers in labeled common /STMTAB/
used as a table to contain GOAL source statements during
parsing. STMTAB is loaded by calling routine INPUT. STMMAX
is used to contain the size of STMTAB. STPTAB contains
pointers to individual records contained in STMIAB. STMTAB
is used to generate the expanded source listing.

Halfword integer in blank common used as a pointer to contain
the subscript of the first significant character of the current
GOAL statement. It is set by routine PREP. It is used by
PARSER to locate the beginning of the statement in STMTAB.

Halfword integer in blank common used as a counter to contain
the ‘internal statement number' for the GOAL statement being
parsed. It is set to 2ero in GINIT and is incremented by 1
for each statement parsed.

Halfword integer equivalenced to ACTCOM (48). Contains the
FORTV variable number representing the condition ‘state off'.

Halfword integer equivalenced to ACTCOM (47). Contains the
FORTV variable number representing the condition 'state on'.

Halfword integer in labeled common /SUBCOM/ used as a flag to

~indicate 'END SUBROUTINE' statement has been parsed. The sub-

routine is written to the subroutine file, STPSUB is cleared
and SUBCNT is incremented by 1.

Halfword integer in blank common used to contain the system

Timit of the size of STPTAB minus 1. It is initialized to
50 in GINIT.

3-206

STPNO

STPSUB

STPTAB

STXMAX

STXTAB

STYPE
SuB

SUBCNT

SUBFLG

SUBTXT

Halfword integer in blank common used as a counter to contain
the number of blocks of expanded source data contained in
STMTAB. STPNO +1 is the number of associated entries in STPTAB.

Halfword integer in labeled common /SUBCOM/ used as a flag to
indicate whether or not the compiler is in the 'strip subrou-
tine' mode. STPSUB = 1 signals the compiler to 'strip' until
an 'END SUBROUTINE' statement is parsed.

Array of 51 halfword integers in labeled common /STPTAB/ used
as a table of pointers to locate individual records in STMTAB.
This table is updated when the routine INPUT is called. STPMAX
contains the size of STPTAB. STPNO is equal to the number of
recordsAin STMTAB. STPNO +1 is equal to the number of entries
in STPTAB.

Halfword integer in blank common used to contain the system
limit of the size of STXTAB. It is set to 12,000 in GINIT.

Array of 12,000 halfword integers in labeled common /STXTAB/
used as a table to contain syntax data used by the PARSER.
STXTAB is loaded from the syntax file by GINIT. STXMAX contains
the size of STXTAB.

Halfword integer in labeled common /COMS@7/. Not used.

Halfword integer in labeled common /COMS49/ used by SUB49 as
a variable subscript to allow common coding to be used for
processing 'row index name' and 'column index name' data into
INTRNM.

Halfword integer in labeled common /SUBCOM/ used as a counter
to indicate the number of successfully 'stripped' subroutines
in the subroutine file. SUBCNT is incremented by ACTION.

Haifword integer in labeled common /SUBCOM/ used to determine
whether or not the subroutine file is to be rewound. The sub-
routine file is to be rewound (SUBFLG = @) only at the end of
a GOAL program compilation and at the beginning of the first

GOAL subroutine compilation.

Halfword integer in labeled common /SUBCOM/. PARSER sets SUBTXT
to an address in STXTAB which contains the number of characters
in any field which fails to parse. This is used by the converter
subroutine SUB51 to accomplish substitution of GOAL words and
phrases for a short form dialect. The characters to be substi-
tuted begin at the address SUBTXT+1.

3-207

SVPRCC

SYMFLG

SYMMAX

SYMTAB

TBF

TBFSAV

TCONT

TD

TEXPT

TIME

Halfword integer in labeled common /SUBCOM/ used to contain
the highest condition code in a GOAL compilation. This is
the condition code that will be passed at the end of the run.

Halfword integer in blank common used as a control word to
enable generation of the internal name cross-reference listing.
It is set to one (enabled) in GINIT and may be modified via
compiler directive in SUB44.

Halfword integer in blank common used to contain the system
Timit of the size of SYMTAB. It is set to 3000 in GINIT.

Array of 3000 halfword integers in labeled common /SYMTAB/
used to contain symbolic names defined in GOAL source state-
ments. Names are entered and/or verified by LOOKUP. Other
data related to the name may be placed in the table imme-
diately following it, provided that the 'free area pointer'
TBF is updated. SYMMAX contains the size of SYMTAB.

Halfword integer equivalenced to SYMTAB (9) used as a pointer
to contain the subscript of the first entry in the unused
portion of SYMTAB. TBF is initialized to 13 in GINIT and is
updated by LOOKUP when a symbel is entered in SYMTAB. Action
routines may place additional data in SYMTAB if they update
TBF accordingly. TBF may not exceed SYMMAX.

Halfword integer equivalenced to ACTCOM (93) used by PREP to
save the value of TBF. This allows for deletion of names from
SYMTAB if the statements containing them are in error.

Halfword integer equivalenced to ACTCOM (65). It is used to
contain the number of characters stored in TSAVE for text
constants. It is updated in ACTION.

Hal fword integer equivalenced to ACTCOM (186). It is used as
a flag to indicate if initial values are provided in DECLARE
statement.

Halfword integer in labeled common /COMS@7/ used by SUB@7 as
? pointﬁr into HWTEXT to the type of parameter being parsed
PARTYP).

Fullword folating point integer equivalenced to ACTCOM (181).

It is used to contain the time value for 'time constants'. It
is updated in SUB48.

3-208

TITLE

TLNOER

TLNOWR

TRCD

TSAVE

TXTFLG

TXTRCD

TYPE

TYPPT

UNDFFD

UNDFNM

Array of 100 halfword integers in blank common. It is a list
of characters used to contain the header printed on each page

of the expanded source 1isting. This array is initialized to
g]agzs in GINIT. It may be modified via compiler directive in
UB44.

Halfword integer in blank common used as a counter for the total
number of errors in a GOAL compile. It is used by DIAGSM to set
the condition code. The counter is incremented by ERROR.

Halfword integer in labeled common /DSCOM/ used by DIAGSM to
indicate the total number of warnings in a GOAL compile.

Halfword integer equivalenced to HEADER (1) in labeled common
JINTTXT/. It is used to contain the record number in inter-
mediate text records.

Array of 80 halfword integers equivalenced to ACTCOM (100). It
is used to contain the characters of a 'text constant'. It is
updated in ACTION.

Halfword integer in blank common used as a flag to indicate to
TXTOUT whether or not intermediate text is to be generated. If
TXTFLG = 1 generation of intermediate text is inhibited. SUB44
sets TXTFLG. DIAGSM tests TXTFLG when setting the condition
code. TXTFLG = 1 gives a condition code of 12.

Array of 406 halfwords in labeled common /INTTXT/ used as the
output buffer for intermediate text records.

Halfword integer in labeled common /INTTXT/ used to contain the
record type in intermediate text records. TYPE is equivalenced
to HEADER (2).

Halfword integer in labeled common /COMS17/ and /COMS49/. It is
set to the type of name in SYMTAB and is used for processing
internal names within SYMTAB for setting up internal name inter-
mediate text.

-Haifword integer in labeled common /DSCOM/ used by FDXREF and

DIAGSM to indicate the total number of undefined function desig-
nators in a GOAL compile.

Halfword integer in labeled common /DSCOM/ used by SYMXRF and

DIAGSM to indicate the total number of undefined names in a
GOAL compile.

3-209

UNDFSN

UNRFNM

UNRFSN

VART

XRFFLG

XX

YY

ZAP

Halfword integer in labeled common /DSCOM/ used by LBLXRF and
DIAGSM to indicate the total number of undefined step numbers
in a GOAL compile.

Halfword integer in labeled common /DSCOM/ used by DIAGSM and
SYMXRF to indicate the total number of unreferenced names in
a GOAL compile.

Halfword integer in labeled common /DSCOM/ used by LBLXRF and
DIAGSM to indicate the total number of unreferenced step
numbers in a GOAL compile.

Halfword integer in labeled common /COMS48/. VART divided by
2 is a value representing the type of internal name being
generated as intermediate text.

Halfword integer in blank common used as a flag to indicate
whether or not the cross-reference table has been built. If
XRFFLG = 0, BLDXRF is called to allocate and initialize the
cross-reference table. This flag is tested by FDXREF, SYMXRF
and LBLXRF.

Halfword integer equivalenced to ACTCOM (1). It is used to
contain the 'overlay' action routine number, (i.e. SUB xx).

It is computed and set in ACTION. If the action is 'resident’,
XX is set to zero.

Halfword integer equivalenced to ACTCOM (2). It is used to
contain the 'resident' action number or the option number for
'overlay' action routines. It is computed and set in ACTION,

Halfword integer in blank common used as a control word to
contain the value of the current ‘'action code'. It is set by
PARSER according to the syntax tables. It is used by ACTION
to select the appropriate 'action' routines to process the
GOAL statements.

Array of 10 halfwords in labeled common /SUBCOM/ used to

contain hard-coded patches to the syntax table. 2AP can
contain up to 5 two-entry (i.e. 'location, patch') patches.

3-210

APPENDIX A
GOAL CATALOGED PROCEDURES

A INTRODUCTION

Cataloged procedures have been provided for use with the GOAL Compiler/
Translator, Data Bank, and utility programs in order to minimize the
requirement for user preparation of Job Control Language statements.
This Appendix describes those procedures currently implemented in the
GOAL system and gives examples of their use. Additional information
regarding cataloged procedures may be found in the IBM Systems Reference
Library publication, Job Control Language Users Guide, reference number
GC28-6703.

A description of each procedure is given followed by an example of its
use. Listings of the cataloged procedures are also included.

Al COMPILER/TRANSLATOR

This section describes the cataloged procedures used for the GOAL Compile
and Translate steps. GOAL compiler revision REVP2 is used in the exampies.

GOAL Compiler Step -~ This step processes the user's GOAL program source
deck. Syntax checks are performed, and the standard GOAL compilation
listings are generated. In addition the 'Intermediate GOAL' data file

is generated. This file is retained for subsequent use in the 'Translator’
step.

A.1.1 GOALC - (GOAL Compiler)

This procedure is used when only the 'GOAL Compiler' step is desired. It

is useful in syntax debugging and/or listing GOAL source programs. The
standard GOAL compilation 1istings are generated. The 'Intermediate GOAL'
data file and symbol table are generated and are retained at completion

of this step. GOAL source program decks are used as input. The GOAL
compiler, action routines, and syntax table are required for this procedure.

//SAMPLE JOB
// EXEC GOALC,COMP=REVQZ
//GOALC.SYSIN DD *

....... GOAL PROGRAM DECK

GOALC Example

A.1.2 GOALCT - (GOAL Compile and Translate)

This procedure is equivalent to GOALC followed by the 'Translation' step.
It is used to produce GOAL interpretive code for interpretive execution.

The interpretive code is contained in a tabular file which is retained at
completion of this procedure. The standard interpretive translator list-

ings may be generated as well as a binari program tape. Interpreter
control cards follow the GOAL source deck.

//SAMPLE JOB
/! EXEC GOALCT,COMP=REVOZ
//GOALC.SYSIN DD *

....... GOAL PROGRAM DECK
/*
//GOALT.SYSIN DD *
....... TRANSLATOR CONTROL CARDS
/*

GOALCT Example
A.1.3 GOALT - (GOAL Transtate)

This procedure may be used when only the 'Translation' step is desired.
It is useful when the 'Intermediate GOAL' data file and symbol table have
been previousiy generated. The interpretive code binary program tape is
generated and retained at compietion of this procedure. This procedure
uses the GOAL translator.

//SAMPLE JOB

// EXEC GOALT,COMP=REVO02
//GOALT.SYSIN DD *

....... TRANSLATOR CONTROL CARDS

GOALT Exampie

A-2

A.2 DATA BANK

This section describes the cataloged procedures used for data bank main-
tenance. Procedures are provided for initializing, updating, and listing
data banks.

A.2.1 GOALDBI - (GOAL Data Bank Initialization)

Before the data bank files can be loaded with specific data, they must be
created and/or initialized. The process of initializing an existing data
bank can be used to delete the contents of the data bank files and to
restore their status to initial conditions. This procedure uses the GOAL
data bank program DBI.

//SAMPLE JO8B
/7 EXEC GOALDBI,DISP=NEW *%CRAEATE AND INITIALIZE DB#**
//STEPL.CHARSET DD *
1234567B90ABCODEFGHIJKLMNDPORSTUVWAYZ =235)Y +=%/2#35EL1],.
A
//STEPL.CINTROL DD =*

BOGO TYPE-1 CARD: TOTAL # RECORDS AVAILABLE IN DATABANK.

30 TYPE-2 CARD: TOTAL # DATABANKS TO BE ALLDOWED.
/%

Example: Create and Initialize Data Bank

f7SAMPLE J0OB
¥ EXEC GOALDBI **INITIALTZE EXISTING DB¥*
//STEP1.CHARSET DD %
1234567890ABCDEFGHIJKLMNOPQRSTUVHXYZ =230)" +-%/24$E]y
/¥ :
//STEPL.CONTROL DD =*
8000 - TYPE-1 CARD: TOTAL # RECORDS AVAILABLE IN DATABANK.
30 TYPE~2 CARD: TOTAL & DATABANKS TO BE ALLOWED.
/%

Example: Initialize Existing Data Bank
A.2.2 GOALDBUP - (GOAL Data Bank Update)

This procedure enables the user to load specific information into the data
bank files. The GOAL compiler, the data bank syntax table, data bank pro-
grams MAINT and DCON, and 0S/360 sort-merge program IERRCOPP are used by
this procedure. A data bank source deck is used as input.

A-3

//SAMPLE J0B
/7 EXEC GOALDBUP,COMP=REVQ2
//GOALC.SYSIN DD *

eessess DATABANK UPDATE INPUT DECK sessess

Sx

//STEP1.CHARSET DD *

1234567890ABCDEFGHTI JKLMNOPQRSTUVWXYZ=3;32< ()Y +=%/ 243561 ,.
/%

//STEP2.SORTFLD 0D =

SORT FIELDS=(144yB14As1344,B1,A,17,664,CH,A)4SIZE=EL1DD0
7/ *

GOALDBUP Exampie
A.2.3 GOALDBL - (GOAL Data Bank List)
This procedure enables the user to obtain a summary listing of the entire
contents of the data bank files. Data bank program SUPERD is called by
GOALDBL.

//SAMPLE JO0O8

/7 EXEC GOALDBL
/%

GOALDBL Example
A.3 UTILITIES

This section describes the cataloged procedures used with the GOAL utility
programs. Procedures are provided for syntax table initialization and
generation, error message file generation, GOAL module updates, and link
editing. '

A.3.1 Syntax Table Maintenance
A.3.1.1 GOALINTL - (GOAL Syntax Table lﬂjjﬁaﬁjzation)

This procedure initializes the syntax table file. It is run prior to
generating any syntax tables (GOALXGEN), and it is not run again unless it
is desired to return the file to initial conditions. GOALINTL uses 0S5/360
utility program IEHPROGM. The input is shown in the example. Output is
syntax Table 1 which is used by the program GOALSNTX (cataloged procedure
GOALXGEN) to build the GOAL syntax tables.

//SAMPLE JOB

// EXEC GOALINTL

//INITLSYSIN DD * . :

123456789 0ABCDEFGHIJKLMNOPQRSTUVWXYZ=230C)1 +-%/28%~L1],.

1 1 9 0 i 0 0 0 G 3 14 5
1 10 9 20 9 B -1 G i 0 0 0
1 19 9 0 9 1 5 94 i 31 5 96
1 28 9 9 7 -1 ¢ 2 0 D 0 G
I 379 1 51 1 &2 -1 0 1 0 0
1 46 9 0 0 3 i5 -1 0 1 0 0
1 55 9 0 6] 1 15 3 54 9 6 -1
1 64 9 o 1 0 0 0 0 5 98 1
1 73 9 75 -1 0 2 0 0 0 0 9
1 82 8 2 9 3 9 4 9 5 -1

1 90 1 3

2 91 3 END

1 94 1 H

2 951 =

1 96 1 1

2 9711 3

1 98 1 1

2 991 |

3 1

/¥

GOALINTL Example
A.3.1.2 GOALXGEN _ (GOAL Syntax Generator)

This procedure is used to generate syntax tables for use by the GOAL

compiler. The program used is GOAL utility program GOALSNTX. Input

is a syntax table card deck, and output is a GOAL syntax table in the
syntax table file,

//SAMPLE J0OB
// EXEC GOALXGEN
//XGEN.SYSIN DD *

....... CONTROL CARD
....... SYNTAX TABLE DECK

GOALXGEN Example
A.3.2 GOALDIAG - {GOAL Diagnostic Messages)

This procedure generates the GOAL error message file. The entire error
message input deck must be included each time GOALDIAG is run. For a list-
ing of current GOAL error messages, refer to Appendix B of Volume II.

GOAL utility program EMSGINIT and 0S/360 utility IEHPROGM are called by this
procedure.

A-5

//SAMPLE JOB
7/ EXEC GOALDIAG

//INIT.SYSIN DD *
e+e+-GOAL ERROR MESSAGE DECK.....

/%

GOALDIAG Example
A.3.3 GOAL Module Updates
A.3.3.1 GOALUPDT - (GOAL Update)

GOAL module updates are accomplished using GOALUPDT except as noted in
A.3.3.2 and A.3.3.3 beiow. This procedure uses 0S/360 utility program
IEBUPDTE, the FORTRAN compiler IEYFORT, and the Linkage-Editor program
IEWL. Both GOAL.SOURCLIB and GOAL.LINKLIB are updated. Procedure
GOALLINK must be run before modules in GOAL.LINKLIB can be executed.

//SAMPLE JOB
EXEC GOALUPDT,NAME=SUBS2

//UP.SYSIN DD *
seseevo [EBUPDTE (OS UTILITY) CONTROL CARDS & UPDATESeeoecsss

/*

. GOALUPDT Example
A.3.3.2 GOALFTCL - (GOAL FORTRAN Compile and Link)
This procedure uses 0S/360 utility IEBUPDTE, the FORTRAN compiler IEYFORT

and the Linkage-Editor program IEWL. Modules updated with this procedure
are:

CRL DBI GOALINIT SUPERD
CRR DCON GOALSNTX
DBD EMSGINIT MAINT

External references are resolved and modules in GOAL.LINKLIB are in
executable form.

//SAMPLE J0B
// EXEC GOALFTCLyNAME=SUPERD
//UP.SYSIN DD =

seeeeas IEBUPDTE (0S UTILITY) CONTROL CARDS & UPDATESecennes
/*
GOALFTCL Example
A.3.3.3 GOALASM - (GOAL Assembler Language Module Update)
This procedure is used to update the assembler language modules RCRETN and

COMPAR. GOALASM uses the 0S/360 assembler program IEUASM and the Tinkage
editor program IEWL.

//SAMPLE J0OB
/7 EXEC GOALASMyNAME=RCRETN

//UP.SYSIN DD *
seeees s [EBUPDTE (0S UTILITY) CONTROL ZARDS B UPDATESecscess

Iz
GOALASM Example

A.2.3.4 GOALLINK - {GOAL Linkage Editor)

This procedure resolves external references in GOAL.LINKLIB. After running
GOALLINK modules in GOAL.LINKLIB are in executable form.

//SAMPLE 40B

vy EXEC GOALLINK,COMP=REV(02
/*

GOALLINK Example

A-7

APPENDIX A
A.4 LISTINGS OF CATALOGED PROCEDURES

7/GOALC EXEC PGM=&COMP

//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALOL,DISP=5HR
//FTOSFO01 DD DDNAME=SYSIN

//FTO6F001 DD SYSDUT=A

//FTO8FO0L DD DSN=GOAL.SYNTAX,UNIT=2314,V0OL=SER=GOALO1,D1SP=0LD
//FTO9F001 DD DSN=GOAL.EMESSG,UNIT=2314,V0L=SER=G0ALOL,DISP=0LD
//FTLOFO01 DD UNIT=2314,SPACE=(TRK,10),DCB=BLKSIZE=200

//7ETLLFODL DD SYSOUT=A,DCB=(BLKSIZE=133,RECFM=UA)

//FT12F001 DD SYSOUT=A,DCB=(BLKSIZE=133,RECFM=UA)

J/ET13F001 DD UNIT=2314,SPACE={TRK,(151)),0CB=BLKSIZE=200
//ET14F0D1 DD DSN=GOAL.INTERTXT,UNIT=2314,VDL=SER=GDALO1,DISP=0LD,
// DCB=BLKSIZE=200

//FT1SFO01 DD UNIT=2314,SPACE=(TRK,(10,1}),DCB=BLKSIZE=200
//ET16F001 DD DSN=GOAL.MACROS,UNIT=2314,VOL=SER=GOALOL,DISP=0LD
//FTLTFO01 0D DSN=GOAL.RPTTBL,UNIT=2314,VOL=SER=GOALOL,DISP=0LD,
// DCB=BLKSIZE=200

//FT18F001 - DD DSN=GOAL.DATAB1, *k DATABANK DATASEY **
/7 UNIT=2314,VOL=5ER=GDALO],

// DISP={0OLD,KEEP)

//FT19F001 DD DSN=GOAL .DATAD], *%* DATABANK DIRECTORY **%
/7 UNIT=2314,VOL=SER=GOALO1,

I DISP={0OLD,KEEP)

//FT21F001 DD DUMMY

//FT22F001 DD DSN=GOAL.SYMTAB,UNIT=2314,V0OL=SER=GOALO1,DISP=0LD
//FT23F001 DD UNIT=2314,SPACE={80,(200,200)),

¥ DCB={LRECL=8D4BLKSIZE=BO,RECFM=F)}

GOALC

A-8

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//GOALC EXEC PGM=ELOMP

JZSTEPLIB DD DSN=GUALLLINKLIB,UGIT=2314,V3L=5SE=GDALOL,DISP=5HR
J/FTGS5F001 DD DDNAME=SYSIH

//FTOBFOOL UD sYSQUT=A

J/ETOBFO0L DD DSH=G0ALLSYNTAY yUNIT=2314,V0L=SER=50ALGL,DISP=0LD
J/FTDOFD0] DD USHN=0OOALL.EMESSGsUNIT=2314,VOL=SER=GUALDL,.DISP=0LD
FAFTLOFO01 DU UNIT=72314,SPACE={TRK,10},DCB=8LK51Z2E=200

J/ZFTLLIFOOL DD SYSUUT=A,DCB={BLKSIZE=133,RECFM=UA)

J/FTLIZ2FO001 DO SYSOUT=A,DCG=(BLKSIZE=133,RECFM=UA]

JZETL3EGOL DD UNIT=2314,5PALE=1TR {1410 ,000=BLKSIZE=200
JZETLAFOD)] DD DSN=GOALGINTERTXT,UNIT=2314,v0L=58R=0G0ALCL,DISP=0LD,
/7 DCB=BLKSIZE=200

F/FTLISFODY DD UNIT=2714,SPACE=(TRK,y (10,113 ,00B=BLKSIZE=200
JZETLAFODL DD DSN=GUAL.MACRUS UNTIT=2314,V0OL=SER=50ALCL,DISP=0LD
J/ZETLITFODL DD DSN=LUOALRPTTHLUNIT=2314,.VOL=SFR=5GOALDL,DISP=0LD,
// DLE=BLKSIZL=200

F/FT18FU0L 0 DSN=GUAL.DATAB]L, . DATABANK DATASET #%
/7 UNIT=2314,V0OL=5ER=250AL01,

/7 DISP=(DLDsKEEP)

//FTLISFA01 oD DOSN=GUALDATAUL, % DATABANK DIRELTDRY ¥x
/7 UNIT=2314,V0L=5ER=50DAL01,

// DISP={0LD,KEEP)

J/FTZ2IFO01 DD DUMMY

J/FT22F001 DD DSN=GDAL.SYMTAB,UNIT=2314,VOL=SER=GGALOL,DISP=0LD
J/FFT23F00L DD UNIT=2314,SPACE={80,(200,200)),

/7 DCB={LRECL=8D,BLKSIZE=B80,RECFM=F)

//GOALT EXeC PGM=XLATOR,CinNo={8,LT)

//STEPLIB DD DSN=GOALJLINKLIB,UNIT=2314,VOL=5ER=50AL01,DISP=5HR
//FTOGFD0OY DO SYSOUT=4

//FTLOFOOL DD DSN=GOALLINTEATXT,UNIT=2314,VOL=SEK=G0ALOL,DISP=0LD
J/FTLLIFO0Y 0D DSN=GOAL.SYMTAB,UNIT=2314,VOL=5%ER=GUALOL,DISP=0LD
//FTIZF0O01 DD UNIT=2314,5PACFE=(CYL,10)

F/FTL3FONY OO UNIT=2314,5PACE=(CYL,1)

FITAPLY DD JUNIT={(180,+DEFER)yLLABEL={4NL}yOISP=INEW,KEEP)
//TAPEQ D UNIT=(1814sDEFER)ZLAREL={yNL) 2 DISP={NEW,KEEP)
F/FTOS5F00Y DD DDNAME=SYSIN

GOALCT

F/GOALT EXEC PGM=XLATOR

//STEPLIR OD DSN=GDALLLINKLIB,UNIT=2314,V0L=SER=G0ALOL,DISP=SHR
F/FTLCFGOL DD NDSN=GOALLINTIRTXT,uUNIT=2314,VOL=SER=G0AL0L1,DISP=(LD
JAFTLIFOOL DD DSN=GOAL.SYMTAL,UNTT=2314,V0L=SER=GUALOI4DISP=0LD
//FTL2FC0L C0 UNIT=2314,5PACE=(CYL,10)

/A/FTL3FD01 DO UNIT=2314,5PACE=(CYL,1)

//FTOGFO0L DD SYSOUT=A

//T&P%? DD UNIT=(180,,DcFCR} W LABEL={yNL) +yDISP=(NEW,KEEP)
FITAPES OO UNIT=(01814,0CFER)yLARCL={ 4NL) yOISP=(NEW,KEEP)
J/FTOSFO31 DN DDNAME=SYSIN

GOALT

A-9

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

/7 PROC DISP=0LD
//7STEP1 EXEC PGM=DBI *XDATABANK INITIAL FORMATTER**
//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALCL1,DISP=SHR
//FT06FQOL DD SYSQUT=A
/7%
//FT10F0O0L DD DSN=GUAL.DATABL, *%kDATABANK DATASET**
7 UNIT=2314,VOL=SER=GOALCL,
/7 SPACE=({172,(8000)+,CONTIG),
/7 DCB=(RECFM=F,LRECL=1T2,BLKSIZE=172},
144 DISP={E&DISP+KEEP,DELETE)
/7%
//FT11F001 DO DSN=GDAL.DATADIL, **DATABANK DIRECTORY**
/7 UNIT=2314,VOL=SER=GDALOL,
1/ SPACE=(1532,(421)44,CONTIG),
r/ DCB=(RECFM=F,LRECL=1532,BLKSTZE=1532),
/7 DISP=(EDISP+KEEPDELETE)
/7%
//FT13F001 Do OSN=GOAL.UTILD, #**TEMPORARY DIRECTORY OUTPUT
/7 UNIT=2314,VOL=SER=GOALO1,
r/ SPACE=(1532,4(421)4,CONTIG),
17 DCB=(RECFM=F,LRECL=1532,BLKSIZE=1532},
¥4 DISP={LDISPKEEP,DELETE)
/7%
//7FTO9F001 DD DDNAME=CHARSET **ALPHA CHARACTER REFERENCE**
//7FT05F001 DD DDNAME=CONTROL
GOALDBI

APPENDIX A

A.4a LISTINGS OF CATALOGED PROCEDURES (Continued)
//GOALT EXEC PGM=&COMP

//STEPLIB

//FTO5F001
//FTO&FO01
//FTOBFOO1
//7FTO9F001
//7FT10F001
/7FT11F001
//FT12F001
//FT13F001
//FTL4FO0L

DD
DD
Do
Do
DD
DD
DD
DD
DD
DD

DSN=GOAL.LINKLIBUNIT=2314,VOL=SER=GDALOL+DISP=5SHR
DDNAME=SYSIN

SYSOUT=A
DSN=GIAL.SYNTAXyUNIT=2314,VOL=SER=GOALDL,DISP=0LD
DSN=GODAL.EMESSG,UNIT=2314,VOL=SER=GDALOL,DISP=0LD
UNIT=2314,SPACE={TRK,10),DC8=BLKSIZE=200
SYSOUT=A,DCB={BLKSIZE=133,RECFM=UA)
SYSOUT=A,DCB=(BLKSIZE=133,RECFM=UA)
UNIT=2314,5PACE=(TRKs{1+1)),DCB=BLKSIZE=200
DSN=GOAL. INTERTXTUNIT=2314,V0OL=5ER=GOALD1,DISP=0LD,

/7 DCB=BLKSIZE=200

F/7FTI5F001 DD UNIT=2314,SPALE={TRK,{10,1}},DCB=BLKSIZE=200
//FTL6F0O01 DD DSN=GOAL.MACROS UNIT=23164,VOL=S5ER=GOALOL1,DISP=0LD
//FTLTFOO01 DD DSN=GOALLRPTTBLUNET=2314,VOL=SER=GDALOL,DISP=0LD,
// DCR=BLKSIZE=200

//FT18FC01 DD DSN=GDAL.DATABL,

UNIT=2314,VOL=SER=GOALOL,

DISP=(0LD,KEEP)

/7

/7
//FT19F001
r/

7
//FT20F001
/7 '
//FT21F001
//78T22F001
//STEP1
//STEPLIB
/1%
//FTO6F0O0L
/1%
//FTL10FO00L
1/

¥

f /¥
//FT11F001
//

¥4

/7%
//FT12F001
/7

¢/

’

f/

/7%
//FTO9F001
//*
//FTO5F001

DD

DSN=GOAL.DATAD],

UNIT=2314,VDL=5ER=G0DALO1,
DISP=(0OLD,XKEEP)

0D

DSN=GLEINPUT,UNIT=2314,DISP=(NEW,PASS) ySPACE=(TRKs(545)),

DCB={BLKSIZE=B0,LRECL=804RECFM=F)

oD
DD

DLIMMY
DSN=GOAL.SYMTAB,UNIT=2314,VOL=SER=GOALO1,DISP=0LD

EXEC PGM=MAINT,COND={4,4LT)

DD DSN=GDOAL.LINKLIB,UNIT=2314,V0OL=SER=GDALO1,+DISP=5HR

DD S5YS0UT=A

pD DSN=GOAL.DATAB1, **xDATABANK DATASET*¢
UNIT=2314,VOL=SER=GOALOL,
DISP=(0OLD,KEEP)

oD DSN=GUAL.DATADL, **¥DATABANK DIRECTORY*%
UNIT=2314,VOL=SER=GOALOL,
DISP=(0LD,KEEP)

oD DSN=EEUNSDORT,

UNIT=2314%,

SPACE={TRKs(545) 1},
DCB=(RECFM=F,LRECL=8D,BLKSIZE=80),
DISP=(NEWsPASS)

DD DONAME=CHARSET

3]8] DSN=LEINPUT ,0ISP=(0L D, DELETE)
GOALDBUP
(Continued next page)

A-11

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

/78TEP2 . EXEC PGM=IERRCOD0, *%S0RT OF DIRECTORY ENTRIES*=*
/7 COND={4,LT), '
/7 PARM="MSG=AP?

//SYSOUT DD SYSOUT=A

//SORTL1B DD DSN=SYS1.SORTLIB,DISP=SHR

//SORTHKO1 DD UNIT=SYSDA,SPACE={TRK,(100) +4CONTIG])
//SORTWKD?2 DD UNIT=SYSDAySPACE={TRK,(100),,CDONTIG}
//7SDORTHKO3 DD UNIT=SYSDA, SPACE={TRK,{100},,CONTIG])
//7SDRTIN DD DSN=LEUNSORT,

1/ DCB={RECFM=F, LRECL=80,BLKSIZE=B0},

/7 DISP={3LD,DELETE)

//SORTOUT oD DSN=ELLSDRTED,

1/ UNIT=2314,

/7 SPACE={TRKs(5,5) 1,

7/ DCB={RECFM=F,LRECL=80,BLKSIZE=80),

/7 DISP=(NEW,PASS)

7/75YSIN DD DDNAME=SORTFLD

//STEP3 EXEC PGM=DCON, *%DIRECTORY BUILD MODULE**

‘7 COND=(4,LT)

//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALD1,DISP=SHR
//FTO06F001L Do SYSOUT=A

//FT10F001 oD DSN=GOAL.DATABI], **kDATABANK DATASET**

/7 ' UNIT=2314,VOL=SER=GOALDL,

7/ DISP=(0OLD,KEEP)

//FTLIFOO1 DD DSN=GOAL.DATAD], *4DATABANK DIRECTORY*#
17 UNIT=2314,V0L=SER=GOALO1,

/7 DISP=(OLDsKEEP)

//FT12F001 - DD DSN=EESORTED, ##SORTED DIRECTORY ENTRIES#x
¥ DISP=(0OLD,DELETE) ‘
//FT13F001 DD DSN=GOAL.UTILD, **TEMPORARY DIRECTORY DUTPUT**
/7 UNIT=2314,VOL=SER=GDALOL, J
/7 DISP=(0OLD,KEEP)

GOALDBUP

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES {Continued)

/7 EXEC PGM=SUPERD
//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=SER=GOALOL,DISP=SHR
//FTO6F001 0D SYSOUT=A
//7FT10F001 0D DSN=GOAL.DATABI1,
/7 UNIT=2314,V0L=SER=GDALO],
// DISP={OLD.KEEP)
//7FTL1FO01L bD DSN=GOAL.DATAD1,
/7 UNIT=2314,VOL=SER=GOALOD1,
/7 DISP={0LD,KEEP)
GOALDBL

//1EHPROGM EXEC PGM=I1EHPROGM

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=A

//0D1 DD DSN=GOAL.SYNTAX,UNIT=2314,VOL=SER=GOALOLl,DISP=(0LD,DELETE}
//7INIT EXEC PGM=GOALINIT,COND=EVEN

//STEPLIB DD DSN=GOAL.LINKLIB.UNIT=2314,VOL=SER=GOALO1,DISP=SHR
//FTOSF001 DD DDNAME=SYSIN

//FTO6F001 DD SYSOUT=A

//FTOBFO001 DD DSN=GOAL.SYNTAX.+UNIT=2314,V0L=SER=GOALO],

/7 DISP={NEW,KEEP) 4SPACE={LYL,5)

GOALINTL

//XGEN EXEC PGM=GOALSNTX

//STEPLIB DD OSN=GOAL.LINKLIB,UNIT=2314,V0L=SER=GOALO1,DISP=SHR
//FT0O5F001 DD DDNAME=SYSIN

//FTO6FQ0L DD SYSOUT=A

//FTOBF001 DD DSN=GOAL.SYNTAX,UNIT=2314,VOL=SER=GOALO1,DISP=0LD

GOALXGEN

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//1EHPROGM EXEC PGM=1EHPROGM

//SYSIN DD DUMMY :

Z/7SYSPRINT DD SYSOUT=A _

//DD1 DD DSN=GOAL.EMESSG.UNIT=2314,VOL=SER=GOALO1,DISP={0LD,DELETE)
//7INIT EXEC PGM=EMSGINIT,COND=EVEN

//STEPLIB DD DSN=GOAL.LINKLIB,UNIT=2314,VOL=5ER=GOALOL1,DISP=SHR
//FTO5F001 OD DDNAME=SYSIN

//FTO6F001 DD SYSOUT=A

//FTO9¢001 DD DSN=GOAL.EMESSG+UNIT=2314,VOL=SER=GOALOL,

7/ DISP={NEW,XKEEP),SPACE={80,1000}

GOALDIAG

£ /UP EXEC PGM=I1EBUPDTE,PARM=MOD

//75YSUT1 DD DSN=GOAL.SOURCLIB,UNIT=2314,VOL=SER=GOALO1,DISP=5HR
/75YSUT2 DD OSN=GOAL.SOURCLIB+UNIT=2314,VOL=SER=GOALOLl,DISP=SHR
J/7SYSPRINT DD SYSOUT=A

//FORT EXEC PGM=JEYFORT,PARM=(SOURCE,NODECK,LOAD,MAP),COND={1,LT,UP)
//SYSIN DD DSN=GOAL.SOURCLIB{ENAME) yUNIT=2314,V0OL=SER=GOALO14DISP=5HR
//7S5YSPRINT OD SYSOUT=A

7/7SYSLIN DD DSN=ELOADSET,DISP=(NEW,PASS) UNIT=2314,

/7 SPACE=(80,1200,100)),DCB=BLKSIZE=80 :

//LINK EXEC PGM=TEWL PARM=(MAP,LET,NCAL)sCOND={{14LT+FORT)o(LsLT,UP))
J7SYSLIN DD DSN=ELODADSETDISP={OLD,DELETE) :

/7SYSLMOD DD DSN=GOAL.LINKLIB(ENAME) UNIT=2314,V0L=SER=GOALO1+DISP=SHR
Z/7SYSPRINT DD SYSGUT=A '

7/7S5YSUTL DD UNIT=2314,SPACE={1024,(100,100)),DCB=BLKSIZE=1024

GOALUPDT

//7UP EXEC PGM=]EBUPDTE,PARM=MOD

//75YSUTL DD DSN=GOAL.SOURCLIB.UNIT=2314,VOL=SER«GOALOL,DISP=SHR
7/75Y5UT2 DD DSN=GDAL.SOURCLIB,UNIT=2314,VOL=SER=GOALOL,DISP=SHR
//S5YSPRINT DD SYS0OUT=A

//FORT EXEC PGM=IEYFORT,PARM=(SOURCE 4NODECK,LOADyMAP) ,COND={1,LT,UP})
//7SYSIN DD DSN=GOAL .SOURCLIB{ENAME) ,UNIT=2314,V0L=SER=GOALOL,DISP=SHR
J/75YSPRINT DD SYS0UT=A

f/7SYSLIN DD DSN=LLOADSET,DISP=INEW,PASS)} UNIT=2314%,

l/ SPACE=(80,{200,100)),0CB=BLKSIZE=80

f/7LINK EXEC PGM=I1EWL,PARM={MAP,LET,LIST)COND={(1+LT+FORT)(1,LT,UP))
F/7SYSLIN DD DSN=&LDADSET,DISP=(0OLD,DELETE)

//7SYSLMOD DD DSN=GOAL.L INKLIBUENAME) JUNIT=2314,V0OL=SER=GDALOL,DIS5P=5HR
//5YSLIB DD DSN=SYS1.FORTLIB,DISP=SHR

/7 DD DSN=GOALCLINKLIB,yUNIT=2314,VOL=SER=GOALOL,DISP=SHR
//7SYSPRINT DD SYSOUT=A

F/75Y5UTL DD UNIT=2314,SPACE={1024,(100,100)),DCB=BLKSIZE=1024

GOALFTCL
A-14

APPENDIX A

A.4 LISTINGS OF CATALOGED PROCEDURES (Continued)

//UP EXEC PGM=1EBUPDTE,PARM=MOD

//5YSUT1 DD DSN=GOAL.SOURCLIB,UNIT=2314,VOL=SER=GOALOL,DISP=SHR
//75Y5UT2 DD DSN=GOAL.SOURCLIB,UNIT=2314,V0L=SER=GOALOL,DISP=SHR
//SYSPRINT DD SYSQUT=A

//7ASM EXECL PGM=TEUASM,PARM=(LOAD,NODECK,LIST),COND={1,LE,UP)

//SYSIN DD DSN=GOAL . SOURCLIB{E&NAME) yUNIT=2314,VOL=SER=GOALO1,DISP=5HR
//SYSPRINT DD SYSOUT=A

//5YSGD DD DSN=ELOADSET,DISP=(NEW,PASS) ,UNIT=5SYSSQ,SPACE={80,1{500,200))
//5YSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//75YSUTL DD UNIT=(SYSSQ,SEP=SYSLIB),SPACE=(1700,(500,50))

//SYSUT2 DD UNIT=SYSSQySPACE=(1700,{500,50))

//5YSUT3 DD UNIT=(SYSSQ,SEP={SYSLIB,SYSUT1,5YSUT2)),

1/ SPACE={1700,1500,50})

//LKED EXEC PGM=TEWL 4 PARM=(MAP y LETyNCAL) 4 COND=((14LE,UP}y{1oLE,ASM))
//7SYSLIB DD DSN=SYS1.TELCMLIB,DISP=SHR

//SYSLIN DD DSN=ELOADSET+DISP=(0LD,DELETE))
//SYSLMOD DD DSN=GOAL +L INKL IB(&NAME) yUNIT=2314,V0OL=SER=GOALOL,DISP=SHR
//SYSPRINT DD SYSOUT=A

//75YSUT1 DD UNIT=2314,SPACE=(1024,(100,100)},0CB=BLKSIZE=1024

GOALASM

¢

//LINK EXEC PGM=IEWL yPARM=*MAP,LET,OVLY ,XCAL,SIZE=(120K,50K)}?

//7SYSLIB DD OSN=SYS1.FORTLIB,DISP=SHR

// DD DSN=GOAL.LINKLIBsUNIT=2314,V0L=SER=GOALO},DISP=SHR

//75YSLIN DD DSN=GOAL.DATA(LINKDATA),UNIT=2314,VOL=SER=GOALOL,DISP=SHR
/75YSLMOD DD DSN=GOAL.LINKLIB{ECOMP) UNIT=2314,VOL=SER=GOALOL,DISP=SHR
f/SYSPRINT DD SYSOUT=A

//7SYSUT1 DD UNIT=2314,SPACE=(1024,(100,100)),0C8=BLKSIZE=1024

GOALLINK

 APPENDIX B
GOAL DIAGNOSTIC MESSAGES

B.1 INTRODUCTION

Two types of diagnostic messages are output by the GOAL compiler - GUAL
system error messages and GOAL compilation error messages. Compilation
error messages indicate errors in the GOAL input source data. The error
conditions are flagged, error messages are printed, and compilation
continues. System errors indicate that the GOAL compiler cannot continue
to process input source data due to internal GOAL system conditions. The
condition code is set to 16 and the JOB step is terminated.

B.2 GOAL SYSTEM ERROR MESSAGES

GOAL system error messages are printed in the following format:

% TERMINAL ERROR -1 *

The GOAL system error conditions are:

System
Error Number Description
1 The maximum number of statement pointers in STPTAB has
been exceeded
2 Not Used
3 Overflow of STMTAB has occurred
4 'Computed GO TO' range error in 'Action' routines
5 Overfiow of cross-reference table XRFTAB has occurred
6 Overflow of macro file has occurrea
7 Invalid text length (less than zero or greater than 406)
passed to routine TXTOUT
8 Not Used
9 Not Used
i0 Overflow of SYMTAB has occurred.

In addition, data bank maintenance routines YEFIND and SEEKDB use system
error numbers 500 and 501 to indicate logical error conditions internal to
the data bank routines. No user error is indicated in these cases.

B-1

100
101
102
103
104
106
108
110
112
114
122
124
128
129
130
131
132
133
134
136
137
138
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

B.3

GOAL COMPILATION ERROR MESSAGES

The following error messages indicate error conditions detected in GOAL

source input data.

These errors are flagged in the expanded source listing

and are defined in the GOAL COMPILER DIAGNOSTIC SUMMARY.

INVALID

INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID

ROW DESIGNATOR OR KEYWORD TROW' IS MISSING .

CILUMN INDEX NAME OR CJLUMN INTEGER NUMBER.

ROW INDEX NAME OR ROW INTESER NUMBER.

LIST INDEX NAME OR LIST INTEGER NUMBER.

REFERENCE OR KEYWORD FOLLOWING KEYWDRD YSEND' OR *APPLY'.
OR MISSING EXTERNAL DESIGNATOR ~FROM-

OR MISSING EXTERNAL DESIGNATOR - TO -

INTERNAL NAME WHICH MUST BE DECLARED AS. A STATE VALUE.
INTERNAL NAME OR STATE WHICH MUST BE DECLARED AS STATE VALUES.
INTERNAL NAME WHICH MUST NOT BE DECLARED AS STATE OR TEXT .
INTEGER NUMBER OF ENTRIES.,

INTERNAL NAME OR STATE .

NUMBER NAME.

NUMBER NAME. THIS NAME IS PREVIDUSLY DEFINED.

NUMBER PATTERN OR NUMBER.

NUMERIC VALUE - MUST BE 1-4 DIGITS.

QUANTITY NAME,

QUANTITY NAME. THIS NAME IS PREVIOUSLY DEFINED .

QUANTITY VALUE.

STATE NAME.

STATE NAME. THIS NAME IS PREVIOUSLY DEFINED.

STATE VALUE.

TEXT NAME.

TEXT NAME. THIS NAME IS PREVIOUSLY DEFINED.

"NUMERIC LIST NAME. :

NUMERIC LIST NAME. THIS NAME 1S PREVIOUSLY DEFINED.
NUMERIC TABLE NAME

NUMERIC TABLE NAME . THIS NAME IS PREVIOUSLY DEFINED.
INTEGER NUMBER DF COLUMNS.

INTEGER NUMBER OF COLUMNS. THE LIMITS ARE 0 THROUGH 45.

INTEGER NUMBER OF ROWS.

INTEGER NUMBER OF ROWS. THE LIMITS ARE 1 THROUGH 45.
COLUMN NAME.,

COLUMN NAME OR KEYWORD 'COLUMN®
QUANTITY LIST NAME.
QUANTITY LIST NAME.
QUANTITY TABLE NAME.
QUANTITY TABLE NAME,
STATE LIST NAME.
STATE LIST NAME.
STATE TABLE NAME.
STATE TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.
INTERNAL NAME OR NUMBER PATTERN .

IS MISSING.
THIS NAME IS PREVIOUSLY DEFINED.
THIS NAME IS PREVIOUSLY DEFINED.

THIS NAME IS PREVIOUSLY DEFINED.

b-2

162
163
164
165
166
167
168
172
173
174
175
176
180
182
184
186
190
195
200
201
202
203
204
206
210
212
214
216
218
220
222
224
228
300
301
302
303
304
305
306
307
308
309

B.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

INVALID TEXT LIST NAME.

INVALID TEXT LIST NAME. THIS NAME IS PREVIOUSLY DEFINED.

[NVALID INTEGER NUMBER OF CHARALTERS.

INVALID INTEGER NUMBER OF CHARACUTERS. THE LIMITS ARE 1 THRODUGH 132.
INVALID TEXT TABLE NAME.

INVALTIO TEXT TABLE NAME. THIS NAME IS PREVIOUSLY DEFINED.

INVALID DELAY STATEMENT FOLLOWING THE VERB DELAY OR WAIT.

INVALID REFERENCE OR KEYWORD FOLLOWING THE VERB ISSUE .

INVALID LEAVE STATEMENT - LEAVE CAN ONLY BE USED WITHIN A SUBRIUTINE
INVALID RESUME STATEMENT.

INVALID LEAVE STATEMENT.

INVALID PERFORM SUBROUTINE STATEMENT FOLLOWING THE SUBROUTINE NAME.
INVALID RECORD DATA STATEMENT FOLLOWING THE KEYWIRD DISPLAY,PRINT OR RECORD.
INVALID STEP NUMBER OR KEYWOROD 'ALL' IS MISSING.

INVALID TEXT, NAME OR FUNCTION DESIGNATOR FOLLOWING THE VERB REPLACE.
INVALID TEXT OR KEYWORD *ENTRY* IS MISSING FOLLOWING THE VERB REQUEST.
INVALID REFERENCE OR KEYWORD 'YPRESENT VALUE OF' FOLLOWING THE VERB SET.
INVALTO WHEN INTERRUPT STATEMENT FOLLDWING THE KEYWORD 'OCLURS'.

THE NUMBER OF ENTRIES INITIALIZED EXCEEDS THE NUMBER SPECIFIED.

THE NUMBER OF COLUMN TITLES EXZEEDS THE SPECIFIED NUMBER ODF COLUMNS.

THE NUMBER OF ENTRIES INITIALIZED IS LESS THAN THE NUMBER SPECIFIED.

THE NUMBER OF COLUMN TITLES IS LESS THAN THE SPECIFIED NUMBER OF COLUMNS.
THE FUNCTION DESIGNATOR SPECIFIED IS NOTV DEFINED IN THE DATA BANK,
INVALID ROW FUNCTION DESIGNATOR. IT IS PREVIOUSLY DEFINED IN THIS TABLE.
INVALID COLUMN TITLE NAME. THIS NAME IS PREVIOUSLY DEFINED IN THIS TABLE.
EXECUTION RATE AS SPECIFIED IS GREATER THAN TEN MINUTES.

CONCURRENT STATEMENT DOES NOT HAVE A STEP NUMBER.

CORRESPONDENCE IS INVALID {SHDULD BE 1 TO 1, 1 T3] MANY DR MANY = MANY)
INVALID NUMERIC FORMULA (UNBALANCED PARENTHESES)

INVALID INTERNAL NAME (NOT DECLARED AS NUMERIC OR QUANTITY)

INVALID INTERNAL 'NAME {(NOT A SINGLE ELEMENT)

INVALID NUMERIC FORMULA (SIZE EXCEEDS COMPILER CAPACITY}

FUNCTION DESIGNATOR SPECIFIED IS NOT A SUBROUTINE PARAMETER.

INVALID MACRO LABEL~ DOES NOT START WITH A LETTER.

INVALID MACRO LABEL~ LONGER THAN 32 CHARACTERS.

INVALID MACRO LABEL- CONTAINS AN ILLEGAL CHARACTER.

INVALID MACRO LABEL~ MACRO LABEL IS MULTI-DEFINED.

INVALID MACRO PARAMETER - DOES NOT START WITH A LETTER.

INVALID MACRD PARAMETER - LONGER THAN 32 CHARACTERS.

INVALID MAZRO PARAMETER - CONTAINS AN ILLEGAL CHARACTER.

INVALID MACRO PARAMETER - MACRD PARAMETER [S MULTI-DEFINED.

EXPECTED SEMICOLON '3' NOT FOUND AFTER PROCESSING THE 10 MAXIMUM PARAMETERS.
EITHER COMMA *,* DR SEMICOLON *3;' WAS OMIVTED.

310
311
312
313
314
315
316
317
318
350
351
352
353
354
400
402
406
408
410
412
413
414
%415
800
802
804
805
806
807
808
309
810
812
8l4
816
826
828
829
830
832
B34
B3s
838

B.3 GOAL COMPILATIGN ERROR MESSAGES (Continued)...

LEFT PARENTHESIS *(* MISSING ON PARAMETER FOLLOWING COMMA.

MACRO TO BE EXPANDED AND/OR EXECUTED IS NOT DEFINED.

MACRD TO BE EXPANDED AND/OR EXECUTED NEEDS PARAMETERS - NONE WERE SJUPPLIED.
INVALID SUBSTITUTION PARAMETER - CONTAINS AN ILLEGAL CHARACTTER.

INVALID SUBSTITUTION PARAMETER - CONTAINS NO CHARACTERS.

NUMBER OF PARAMETERS IN STATEMENT AND MACRO ARE NDT THE SAME.

NUMBER OF PARAMETERS IN STATEMENT EXCEEDS NUMBER OF PARAMETERS IN MACRD.
INVALID SUBSTUTUTION PARAMETER - LONGER THAN 79 IHARALTERS.

INVALID MACZRC BODY -~ CONTAINS NO THARACTERS.

INVALID CHARACTER STRING - CONTAINS AN ILLEGAL CHARALTER.

INVALID CHARACTER STRING - CONTAINS MORE THAN 32 CHARACTERS.

INVALID REPLACEMENT CHARACTER STRING. CONTAINS MIRE THAN 80 CHARACTERS.
INVALID REPLACEMENT CHARACTER STRING. CONTAINS AN ILLEGAL CHARACTER.
REPLACEMENT NAME, CHARACTER STRING OR FUNCTION DESIGNATOR IS MULTI-DEFINE
NUMBER OF DATA BANKS IN USE HAS EXCEEDED THE MAXIMUM DF 10. l'
DATA BANK SPECIFIED IS ALREADY IN USE.

INVALID DATA BANK NAME. THE DATA BANK NAME IS MULTI-DEFINED.

UNABLE TO FREE DATA BANK AS NONE IS5 BEING USED AT THIS TIME.

SPECIFIED DATA BANK NAME DOES NOT EXIST.

UNABLE TO FREE DATA BANK AS IT IS NOT IN USE AT THIS TIME.

LABEL ERROR -~ THE STATEMENT FOLLOWING AN UNCONDITIONAL GO TO IS NOT NUMBERED
STRUCTURAL ERROR *% PREAMBLE STATEMENT FOUND IN PROCEDURAL BODY.

SYMBOL TABLE OVERFLOW HAS OCCURRED. A MAXIMUM OF 9999 ENTRIES IS ALLOWED.
INVALID ADDRESS - MUST BE 1-4 DIGITS.

INVALID COMPARISON TEST.

INVALID DATA BANK NAME. _

INITIALIZATION OF REFERENCED **SUBRDUTINE PARAMETER®* NAME IS NOT ALLOWED._
INVALID OR MISSING EXTERNAL DESIGNATOR.

END PROGRAM STATEMENT IS INVALID DURING A SUBROUTINE COMPILATION.

INVALID FUNCTION DESIGNATOR.

END SUBROUTINE STATEMENT IS INVALID DURING A PROGRAM COMPILATIDN.

INVALID NUMBER,NUMBER PATTERN,QUANTITY,STATE,TEXT DR INTERNAL NAME.
INVALID INTEGER NUMBER. :

INVALID INTERNAL NAME.

INVALID OR MISSING REFERENCE FOLLOWING THE COMMA.

INVALID NUMERIC FORMULA.

INVALID OUTPUT EXCEPTICN,

INVALID NAME OR FUNCTION DESIGNATOR.

INVALID SUBROUTINE PARAMETER (NAME OR FUNCTION DESIGNATOR}.

INVALID DR MISSING PROGRAM NAME.

INVALID QUANTITY DOR INTERNAL NAME .

INVALID REVISION LABEL.

INVALID ROW DESIGNATOR.

B-4

k.3 GOAL COMPILATION ERROR MESSAGES (Continued)...

841 INVALID STEP NUMBER. THIS STEP NUMBER IS PREVIDUSLY DEFINED.

842 INVALID STEP NUMBER,

843 INVALID PERFORM PROGRAM OR PERFORM SUBRDUTINE STATEMENT.

844 INVALID SUBROUTINE NAME.

845 BEGIN PROGRAM FOUND DURING A PROGRAM COMPILATION.

846 INVALID TABLE NAME.

847 INVALID FORTRAN SUBRDUTINE NAME,.

848 INVALID TEXT CONSTANT,

849 A TEXT CONSTANT ENTRY EXCEEDED THE MAXIMUM NUMBER OF CHARACTERS SPECIFIED.
850 INVALID TIME VALUE.

852 INVALID FUNCTION DESIGNATOR TYPE IN THE SPECIFY STATEMENT.

853 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A LDOAD OR SENSOR ANALODG.
854 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST BE A LOAD OR SENSOR DISCRETE.
855 INVALID ROW FUNCTION DESIGNATOR TYPE. MUST B8E A SYSTEM FUNCTION DESIGNATOR.
856 THE NUMBER OF ROW FUNCTION DESIGNATORS EXCEEDS THE NUMBER OF ROWS.

857 THE NUMBER OF ROW FUNCTION DESIGNATORS IS LESS THEN THE NUMBER OF RDWS.
900 KEYWORD NOT FOUND - AND.

901 KEYWORD NOT FOUND - RETURN,

902 KEYWORD NOT FDUND - AND SAVE AS.

903 KEYWORD NOT FOUND - ADDRESS.

904 KEYWORD NOT FOUND - AS.

907 KEYWORD NOT FOUND - READINGS OF.

908 KEYWORD NOT FOUND - CHARACTERS.

909 KEYWORD NOT FOUND ~ CRT, PRINTER, TAPE, INTERRUPT, 0OR FLAG.

910 KEYWORD NOT FOUND - DATABANK OR MACROD.

911 KEYWORD NOT FOUND - ANALOG, CLOCK, DR DISCRETE.

912 KEYWORD NOT FOUND - ENTRIES.

313 KEYWORD NOT FOUND - EXCEPTIONS.

914 KEYWORD NOT FOUND -~ EQUAL TO OR =.

916 KEYWORD NOT FOUND - FROM

918 KEYWORD NOT FOUND - LOAD OR SENSOR OR SYSTEM.

920 KEYWORD NOT FOUND - OCCURS.

922 KEYWORD NOT FOUND - UNTIL.

924 KEYWORD NOT FOUND - PRESENY VALUE OF.

925 KEYWORD NOT FOUND - COLUMNS.

226 KEYWORD NOT FOUND - ROWS AND.

927 KEYWORD NOT FOUND - REVISION.

930 KEYWORD NOT FOUND - SUBROUTINE.

334 KEYWORD NOT FOUND - TIMES.

938 KEYWORD NOT FOUND -~ TO

939 KEYWORD NOT FOUND - TYPE.

940 KEYWORD NOT FOUND - WITH.

941 KEYWORD NOT FOUND -~ WITH ENTRIES.

Y4
945
946
948
952
954
986
987
988
989
930
991
992
393
994
995
996
997
998
999

B.3

KEYWORD

GOAL COMPILATION ERROR MESSAGES (Continued)...

NOT FOUND - WITH A MAXIMUM OF, EQUAL TO DR =.

BEGIN PROGRAM OR BEGIN SUBROUTINE FDUND DURING A SUBROUTINE COMPILATION.

KEYWORD
KEYWORD
KEYWORD
KEYWORD
KEYWORD
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID
INVALID

NOT FOUND - PERFORM PROGRAM, VERIFY, DISPLAY, PRINT, DR RECORD.

NOT FOUND - NUMBER, QUANTITY, STATE OR TEXT.
NOT FOUND - PROGRAM OR SUBRDUTINE.
NOT FOUND -~ AND INDICATE RESTART LABELS DR SEMICOLON *3°.

NOT FOUND - THEN OR COMMA 1',*

PAGE NUMBER FOLLOWING THE WORD PAGE. LIMITS ARE 1-999.

LINE SIZE FOLLOWING PAGE SIZE. LIMITS ARE 80-110.

PAGE SIZE FOLLOWING THE WORD LINE. LIMITS ARE 1-32767.

DATE TEXT CONSTANT FOLLOWING THE WORD DATE. LIMITS ARE 1-8.
TITLE TEXT CONSTANT FULLOWING THE WORD TITLE. LIMITS ARE 1-100.
SEQUENCE FIELD NUMBER FOLLOWING THE WORD SEQ. LIMITS ARE 0-10.
COMPOUND COMPILER CONTROL CARD.

COMPILER CONTROL CARD.

THIS STATEMENT IS NOT RECOGNIZED AS A GDAL STATEMENT .

EXPECTED DOUBLE DOLLAR SIGN '$$' NOY FGOUND

END STATEMENT NOT FOUND - SOURCE DECK DEPLETED -~ COMPILATION TERMINATED.
EXPECTED COMMA 4t NOT FOUND.

EXPECTED SEMICOLON *3' NDT FOUND.

