ND OPERATION
AE:SSPACE LANGUAGE
|GOAL)

TEXTBOOK

(NASA-TH-X-&QSQZ) GRODND OPERATIONS -
AEROSPACE LANGUAGE {GOAL) TEXTBOOK (NAS2) N73-33129
275 p HC $15.75 CS5CL 09B

.1 Unclas

63708 19644
PREPARED BY:

Larry H. Dickison
Launch Vehicle, Checkout Automation
and Programming Office, LV-CAP-B

APPROVED:

%M/(‘/ffc / Pyl
Freddie R. Head
Launch Vehicle, Checkout Automation

and Programming Office, LV-CAP-B

CONCURRENCE :

% i 2 -1 ' ;

‘ A(?élle#// /Xfégiblbjf1vx.
Walter J. Xapryan /7 /
Director of Launch Operations

ST A s
LCIRCULATION

wwwww

€ B

AEROSPACE LANGUAGE

1. Report No. o 2, Govormmers desession Ho, 3. Recipiont’s Catolog Ba.

TR-1228

4 Titla and Subtitle ' — T 3. Raport Dato
Ground Operations Aerospace Language {GOAL)
Taxthbook 6. Performing Urgonization Lode
‘ 7 © LV-CAP
7. Aathor{s) ' ‘ ' 8. Performing Qeganizetion Regact Ko.
Larry R. Dickison
4. Perfaring (rganizatiaa Nome ond Addross k 10, York Unit Mo,
LV/Checkout Automation and TS
Programming Office/LY~CAP ' o

13, Tybe of Repagt ond Paried Covered

12. Sponsoring Agency Home ond Address
Technical Report

14, Sponsoring Agersy Code

15, Supplomoentory Hofes

116, Abstroct

The Textbook provides a semantical explanation accompanying a complete
set of GOAL syntax diagrams, System concepts, language component inter-
action, and general language concepts necessary for efficient languwage
implementation/execution.

Note: IS-DOC-3, (Printing Management Branch)}, is responsible for the
guality of printing ¢f this document.

17, KeyWords o 18 Bistribotion Statomant
Computer Language Specification

Standard Test Language Specification
Space Shuttle Test Language Speci-

fication
Syntax Biagram Handbook e 7
19. Securlty Claes (. {of thés cagart) 20, Security Clagsif. {of this page} 2. No. of Pages 22, Prics -
Unclassified ‘ Unclassified

KEC FORM 0T ~244 (B/71) (UNETIME FOAM ~ ﬂEPRINT'NOT AUTHORIZED)

PREFACE

This handbook is intended to be used as a textbook in a classroom environment.
It is functionally organized to allow an instructor to cover similar state-

ments together. Other documents developed are:

A GOAL OVERVIEW document relates the history that led to the development

of the GOAL Tanguage and provides a summary of the features and capabilities

of GOAL.

A GOAL SYNTAX DIAGRAMS HANDBOOK TR-1213 that contains an alphabetical

arrangement of syntax diagrams used in the GOAL language.

Some pages are left blank intentionally.

ii

TABLE OF CONTENTS.

SECTION TI. FUNDAMENTALS OF GOAL

Introduction

1.0 Introduction 0 v e v e e e e e e e e e s e s
1.1 03 o o
1.2 General Concepts cii .t e e e e e e e e e e
1.2.1 Character Set ,« .
1.2.2 External/Internal Names ., ., +« . . .
1.3 Syntax Diagrams f i v e e e e e e e e e e
1.4 Statement Classifications

1.4.1 Declaration Statements
1.4.2 Procedural Statements
1.4.3 System Statements

ooooooooooooo

SECTION II. DECLARATION STATEMENTS

2.0 General . . . L L L e e e e e e e e e e e e e e e e e e

2.1 Declare Data v « v v v i v e e e e e e e
2.1.1 Declare Data Statement «

2.2 Declare Lists ¢ v v v v i i e e e e e e e
2.2.1 Declare Numeric List Statement
2.2.2 Declare Quantity List Statement ,
2.2.3 Declare State List Statement _ .,
2.2.4 Declare Text List Statement , .,

2.3 Declare Tables . ., v v v v v v v v o ..
2.3.1 Declare Numeric Table Statement ., .,
2.3.2 Declare Quantity Table Statement .,
2.3.3 Declare State Table Statement .,
2.3.4 Declare Text Table Statement

SECTION III. PROCEDURAL STATEMENTS

3.0 General e e e e e e e e e e e e e e e e e
3.1 Procedural Statements Prefix « « v « . . .
3.1.1 - External Test Action
3.1.2 Command Statements « v v v & o .
3.1.2.1 Apply Analog Statement ,
Issue Digital Pattern Statement |, .
Set Discrete Statement
Record Data Statement
e Statements .,
Average Statement ,
Read Statement .,
Request Keyboard Statement
nal Sequence Control
Delay Statement
~Go To Statement
Repeat Statement
Stop Statement |, . .,
Terminate Statement

ooooooo

e n

p

w

e

w
WWWIowww
...:....a._.vu):..l:..:..a
. e e o e
wwwor\)r\:r\:
wl\)-—'m-bwl\)

3.2

.................
s e ® e ®» ®» & s & s & e & s o =
................

cccccccccccccccc

OB W N -

(14

NN OY OY RO PN N e el

TABLE OF CONTENTS (Continued)

3.3 Arithmetic/Logical Operations 91
3.3.1 Assign Statement. 93
3.3.2 Let Equal Statement ., 95
3.4 Execution Control v . v v v i e e . 96
3.4.1 Concurrent Statement 99
3.4.2 Release Concurrent Statement . ., 103
3.4.3 Perform Program Statement . ., 105
3.4.4 Perform Subroutine Statement ., . . ., 109
3.5 Interrupt Control 111
3.5.1 When Interrupt Statement 113
3.5.2 Disable Interrupt Statement ., ., . ., 117
3.6 Table Control v v v v v v e 119
3.6.1 Activate Table Statement 121
3.6.2 Inhibit Table Statement 125
SECTION IV. SYSTEM STATEMENTS
4.0 General e e e e e e e e e e e ., 127
4.1 Boundary Statements o v e ... 127
4.1.1 Begin Data Bank Statement . ., 129
4.1.2 _ Begin Program Statement , 131
4.1.3 Begin Subroutine Statement , ., 133
4.1.4 Begin Macro Statement 135
4:1.5 End Statement 137
4.1.6 Leave Statement v 139
4.1.7 Resume Statement 143
4.2 System Directives . ., . .,, 144
4.2.1 Use Data Bank Statement 147
4.2.2 Free Data Bank Statement , 149
4.2.3 Specify Statement ., 151
4.3 Special Aid Statements , 153
4.3.1 Comment Statement , ., 155
4.3.2 Expand Macro Statement, 157
4.3.3 Replace Statement ., , 161
SECTION V. SYSTEM CONCEPTS
5.0 Gemeral i . s e e e e e e e e e e e e 163
5.1 Allowable Structures v & v v o v v e e e e 163
5.1.1 Program , e e e e e e e e e e e 167
5.1.2 Data Bank e e e e e e e 169
5.1.3 Subroutines , e e e 171
5.1.3.1 Program Subroutine Interaction , , 171
5.1.3.2 Program Subroutine Similarities , 171
5.1.3.3 Program Subroutine Differences . . 172
-5.1.3.4 Subroutine Advantages 173
5.1.3.5 Subroutine Example ., , 173
5.1:3.6 Subroutine Parameter Replacement , 174
5.1.4 Macro . ., S R VY 4

5.2

5.3

SECTION VI.

6.0
6.1

6.2

6.3

6.4

6.5

6.6

TABLE OF CONTENTS {Continued)

5.1.4.1 Macro Example
Non-Goal

1.5
angu
2.1 Language , , .
2.2 Language Processor

nnnnnnnnnnnnnn

5.2.2.1 System Subroutines

5.2.2.2 System Macres

5.2.2.3 Processor Options | S
2.3 Executive , , ., . .., .. e e e e e e e e
rogramming Concepts . ., , . . e e e s o e e
3.1 Concurventy
3.2 Language Level Intervupts ,

' 5.3.2.1 Language Level Interrupt Examples
.3.3 Table Techniques , . .,, . « « « « ..
3.4 Program Termination . . .
3.5 Pimensions

GOAL ELEMENTS

General ., .
Character Set
6.1.1 Character
.2 t.etter
.3 Numeral

A Symbol . , . . . e e e e e s
racter Groups i e e e e e e e e e e s
A Character Strxng ,,,,,,,,,,,,,,,
Text Constant ., ,
nal Reference . . .,
Function Designator
External Designator
Row Designator , . . ,

nmmm
o ..-.s.....:...s

h

-

X

uuuuuuuu

Hmmmmmm
wwwwﬁmm

.

n r , ;
Neme , ., e s e e e e e e e e s .
Column Name ., . . .

3 Data Bank Name , , ,

4 Index Name

.5 List Name

.B Parameler | ., , ., . i 4 & 4 b e e e e e e e .

Program Name ., . ,

8 Subroutine Name

.9 Table Name & v v v v e e e e s e e .

;0 Internal Name ., e e e e e . ..

S

-

U-&-h-b-b&@-&h&&&

m
(ﬂ

1
2
Tonal Prefixes ., v v v o v v e e e e m e e e e e,
.1 Procedural Statement Prefix .,
4
.3

b=
cnmmd-m

Step Number , .,, . .. e e a e s .
Tim Prefix - - v - » » . £ - . . ¢ €& ¢ « » &

mmmmmc\r‘mmmmmmmo‘)mm

179
181
182
182
182
183
183
183
184
184
185
185
188
192
197
188

202
205
205
205
207
207
208
209 -
209

211
213
213
215
215
215
217
217
217
217
219
219
219
221
223
223
223
225
225
227
229

s B B R e
« e e e 4
Crda W~ O

.10

mmmmmmmmmzmmmmmmmm

TABLE OF CONTENTS (Continued)

. o -
O\l’\l\l\igm'

M »

Numeric Formula .« « « v v v v v v v 4 o o o«
Comparison Test v e s e s e a s
Limit Formula « « v v o v v« v v o a o o o

(o
—te
(@]
=

X e 4 4 s s v s s & & e s E » o m % e s s e e o »
Qutput Exception . + « + ¢« v ¢ v v v o 0 . .
r Presentation .« « ¢« ¢ ¢ vt o i e e e e e e e e
Number Pattern s e e e e e e e e e
Binary Number . « . « . ¢ v ¢ v ¢ v v v o 4 .
Hexadecimal Number
Integer Number « « v « v v v v v v v o v . . .
Octal Number . « « ¢ © ¢ ¢ v ¢ v v v v v o« o
Number . . « ¢ v« v i i e e e e e e e e e e
eering Values (Dimensions) . . . « ¢ v v v v v . .
1 Quantity e e e v e e e e
.2 State . . 0 L e e e e e e e e e e e e e
6. 10 3 Time Value . « « & v & v v v v v v e e e e
Capability Chart ¢ v o v v v v v o v v o ..
GOAL Keyword Phrase Index e e e e e e e e
GOAL Statement Index . . « + v ¢ v v v v v v 0 v e v .
GOAL Elements IndeX . & ¢« v v v v v v v v v v v e 0w
Feedback Letters Versus Diagram Chart
Index of Syntax Diagrams « « « « v v « « v . .

umb

S QTR WN I (D =TT WP~

n

-—'»—'LD KOKOKOLD\OLDE [oe]

OO—'

vi

231
234
237
239
241
243
244
247
249
249
249
249
251
251

- 251

253
253
253
255
256
259
263
264
265
267

1.0

1.1

SECTION I, FUNDAMENTALS OF GOAL
INTRODUCTION
GOAL, Ground Operations Aerospace Language, is a high order test lan-
guage drawing from several languages in addition to NASA's experience

in space vehicle testing.

The GOAL language and its associated rules will serve as the standard
for test procedure specifications. Although the primary intent of
GOAL is to control test procedure specification and not the associated
tanguage processors, executives, or test equipment, some suggested
conventions are offered to assist in promoting uniform implementation

and use.

SCOPE

GOAL is a test engineer oriented language, which is designed to be
used as the standard procedure terminology and test programming
tanguage in performance of ground checkout operations in a space
vehicle test and launch environment. It encompasses a wide range of
testing, including vehicle systems and subsystems preflight checkout,
ground preflight operations; such as propellant transfer, support
systems verification, ground power control and monitoring, etc. The
Tanguage is compatible with a wide variety of engineering design,
requiring primarily command/response actions (ana]qg and digital) to
the systems to be tested. It may be used in the checkout of line
replaceable units, both on-board preflight, and in the shop. It pro-
vides the flexibility to allow performance of the same procedure in
both automatic and manual modes. GOAL permits a high degree of
readability and retainability by providing the necessary operators
required for testing, expressed in a familiar notation. Therefore,

it is easily learned and understood by personne]}hot necessarily
1

1.2

1

2.1

skilled in programming techniques.

GENERAL CONCEPTS

The "statement" format was selected as the most natural form for pre-
paring test procedures. An unrestricted free field format was adopted
for the flexibility it afforded in stateﬁent positioning and para-
graphing during procedure development. Judiciously used, this fea-
ture should greatly enhance the readability and the logical layout

of the procedure. This format is also readily adaptable to various
input mediums - computer cards, remote terminals, etc. The freé

field concept minimizes the importance of blanks or spaces within a

statement.

Character Set

The GOAL character set is compatible with both the USA Standard Code
for Information Interchange (ASCII) and the Extended Binary Coded
Decimal Interchange Code (EBCDIC), allowing the individual processing
systems to assign meaning to other special characters used in their

system for system control and processing options.

The GOAL character set consisfs of:

.

CAPITAL LETTERS: A-Z MINUS —
NUMERALS 0-9 stAsH /
SPECIAL CHARACTERS: SEMICOLON o
ASTERISK DECIMAL POINT e
BLANK ¥ LEFT ANGLE BRACKET <
COMMA 9 RIGHT ANGLE BRACKET >
CURRENCY § LEFT PARENTHESIS |
EQUAL = RIGHT PARENTHESIS)

PLUS +

Only these characters are used in forming the language words and
parameters. By convention, when writing GOAL Statements, the letter
“@" should be slashed and the numeral "G" should not be slashed. This

convention is not shown in the syntax diagrams.

1.2.2 External/Internal Names

A convention was adopted that allows immediate recognition of system
names and parameters that are separated because of their key role in
the procedure ana because by nature they are system software or hard-
ware dependent. These jtems are enc]osed in angle brackets, e.g.,
<MAIN PONER>. Items so named are centrally maintained and are
made available to the Language Processor within a package called a

Data Bank. These special items are called Function Designators to
.prevent any possible misunderstanding. Al1l other names used in the
glanguage are enclosed in parenthesis, e.g., (PRESS SAVE). No two Names

i

Ymay be the same nor may any two Function Designators be the same.

1.3

~
!

Because blanks are considered insignificant when the processor is buil-
ding or checking a Name or Function Designator, care must be used in
selecting names that will not appear as duplicates to the Processor.

For instance: (ApB) and (AB) would be interpreted as the same Name.

SYNTAX DIAGRAMS

To illustrate the different allowable variations of each statement, a
presentation method using syntax diagrams was selected. Syntax diagrams
jdentify legal sequences of items in a GOAL statement, including alter-
nate branches, optional entries, and feedback loops. The fo11oWing is
an example of a syntax diagram 111ustrating a "READING STATEMENT."

Note the use of a semicolon as a statement terminator.

AND 11

STATEMENT /
L N SITIED. EIENEE CRADRER J
MAGAZINE

BOOK
READING _% READ A \

C

This allows any of the fo]]owing sentences to be written:

READ;

READ A BOOK;

READ A MAGAZINE;

READ A BOOK AND A MAGAZINE;
READ A MAGAZINE AND A BOOK;
READ A BOOK AND A BOOK;

READ A MAGAZINE AND A MAGAZINE;

If the use of "book" and "magazine" appeared the same way in several
‘diagrams and represented a Togical grouping, then a new syntax unit

cou]d be created.

@ @

i

m% /————-- BOOK
DOCUMENT g
J

READING I READ

STATEMENT

\\n——;MAGAmNE'

The above diagram would then become:

rmmmmmw
A ! DoCumMENT

o @

ghed box represents a syntax unit. The syntax unit on the left

-I-s’
LIeE

istbethg defined in terms of "characters" and other syntax units..

Some tbasic rules for using syntax diagrams are:

® Syntax diagrams are read from left to right except for feedback
loops. .

G —~———— 1is a connecting path. and indicates that the insertion

of blanks and/or comments is allowed.

Capital letters must be used as shown.

Diagonal lines are alternate forward paths.

A bubble indicates the start of a return (feedback) path.

®© © @ @

A numeral at the beginning of a return path indicates the

maximum number of times a path may be taken.

® A letter at the beginning of a return path indicates the number
will be assigned after a system is selected.

® Syntax notes provide semantical explanation.

GOAL statements terminate with a semico]dn.

) A syntax diagram reference number is placed in each syntax unit.

To facilitate the location of any syntax diagram in this handbook, an
INDEX OF SYNTAX DIAGRAMS on page 267 lists the initial words of the

diagram name, the number of the diagram, and the page where it is

1.4

1.4.1

Tocated. A FEEDBACK LETTERS VERSUS DIAGRAM CHART on page 265 lists
the letter annotations on diagram féedbacks and the appropriate defi—.

nition of each letter.

STATEMENT CLASSIFICATIONS
Each GOAL statement is classified as either a Declaration Statement,

a Procedural Statement, or a System Statement.

Declaration Statements -

A Declaration Statement is a non-test action statement that is requifed
in an automated system to reserve storage, supply initial data con-
ditions, or to declare the "type" of data that is valid for specified
actions. Of course, in specifying manual procedures, most of decla=
ration type information is implicit rather than explicit. Tesf per-
sonnel know a meter is calibrated in certain units and if the meter
readings are used in computations, then care is exercised to ensure

data compatibility.

GOAL declarations may be considered as either Simple Data Declarations,
List Declarations, or Table Declarations. The Simple Data Declaration

provides a unique name for each data entry.

The Tist structure is used to assign a single name to a 1ist (one
co]umn)Aof data entries. The table structure is generally used to
interface the test procedure with the system under test using a "rows
and columns" format. Réfer to Section II for more information on

tables and lists.

Within each of the declaration structures the data "type" must also

be indicated. The allowable types are Numeric, Quantity, State, or

Text. The four data types are defined in Section VI.

The general format of a Declaration Statement is:
DECLARE "TYPE" "STRUCTURE" [ENTRIES"
Example: DECLARE NUMERIC LIST (LIST 1) WITH 4 ENTRIES 1, 2, 3, 4;

1.4.2 Procedural Statements

Procedural Statements are the GOAL test action statements that specify
the commands to be issued, the execution sequence, and other state-
ments that are executed to perform a test. The general structure of
a Procedural Statement is the same as a simple imperative English sen-
tence, with the subject understood to be the computer. The minimum
requirement for a Procedural Statement is a verb; however, most state-
ments also contain an object to receive the action. An optional
phrase may be used to modify the action: that is, tell when, how

often, or how long to perform the action. Example:

'OPTIONAL MODIFIER VERB OBJECT
AFTER< CLOCK >TS
-3 HRS 30 MIN, OPEN <INLET SUPPLY VALVE > ;

1.4.3 System Statements

System Statements act as directives to the Language Processor {compiler/
translator) or to serve as Boundary Statements in signaling the

“Language Processor of the beginning, or the end, of a compbnent.

‘The general format is: VERB OBJECT
Example: BEGIN PROGRAM (POWER UP)3

________________ ¢

I 1
E DATA STATEMENT

L _ _ DECLARE DATA STATEMENT
" "DECLARE NUMERIC LIST STATEMENT
R d
/ E DECLARE NUMERIC TABLE STATEMENT }
[T e e e e e -
/ L___DECLARE QUANTITY LIST STATEMENT |
1(L \ I DECLARE QUARTITY TABLE STATEMENRT 2
TS |
\ { .. DECLARE STATE LIST STATEMENT
[e o v ATE T ADT B SR T |
L __ DECLARE STATE TABLE STATEMENT ,

2.0

2.1

SECTION II, DECLARATION STATEMENTS
GENERAL
Declaration Statements are those statements required by automatic pro-
cessing to instruct theé system regarding the number of memory storage
units to reserve for use by the procedure and to indicate the type of
data that is to reside there. Initial values may be entered. GOAL
has three types of statements for providing this information and for
assigning a name to a collection of storage units. A single declare
capabj]ity is provided for assighing a name to a single data entry.
List declarations allow for the assignment of a name to a collection
of related data. Table declarations allow for data columns to be
used relative to one or more Function Designators. These statements
are easily identified by the key word DECLARE, which is always the

first word of any Declaration Statement.

DECLARE DATA

The simple Data Declaration Statement is used on a one-to-one, name

versus data, basis.

| DECLARE
DECLARE DATA STATEMENT

e/

r DECLARE jl 3
I patasTaTement § DECLARE !
| S 17§ '
) ° A —)
r 7)
e e - KUMBER
r T L 18]
1 a-—NUMBER NAKE EQUAL~TO r:ﬁ:‘;‘:mg ;
| I | ' NUKBER
PATTERN
—__ 9 A
~ QUARTITY ;i NAME EQUAL ~Tol-—-§ QUANTITY ¢
. b 58 b4

- —9] A
4o —
~ STATE HARE EQUAL —~—TO STATE
I} | Np—r |

9
TEXT NAME WITH=A~HAXINUM -OF 4 ';“Jg-ggg b CHARACTERS
| . 1 | 38

- —-—-——.q
_ \ i T
EQUAL—TO CORSTANT _ |

| SR, £~

8 9

]

10

DECLARE

DECLARATION
PROCEDURAL
SYSTEM

2.1.1 Declare Data Statement

Examples: DECLARE NUMBER (RESULTS);
DECLARE QUANTITY (OFFSET) = .5V, (PUMP PRESS);
DECLARE STATE (FLAG A) = ON;
DECLARE TEXT (FRROR MESSAGE) = (6D10 BATT VOLTAGE LOW);

The DECLARE DATA STATEMENT is a compiler directive and is used to as-
sign data characteristics to specifié names called Internal Names.
Internal Names defined by a DECLARE DATA STATEMENT are internal to

a test program and are not directly related to the unit under test.
A1l Internal Names referenced by a test program must be explicitly

declared.

The various data characteristics that can be assigned to an Internal

Name are: Number, Quantity, State, and Text.

A Number may be declared to establish an initial value of an Internal
Name. An Internal Name may be supplied an initial value of either

a Decimal, Binary, Hexadecimal or Octal Number.

A Quantity may be declared to establish an initial value as a Decimal

Number followed by a Dimension identifier, or as a Time Value.

A State used as an initial condition, must be either'ON, OFF, OPEN,
CLOSED, TRUE or FALSE.

1

2.2

DECLARE

A Text data entry may be fixed in length, i.e., a Text Constant, for
use as a precanned program message. A Text variable may also be dec-
lared as a specific number of characters which'may be used to reserve
storage for messages that are to be inputs to a test procedure during
execution. If an Internal Name is used to declare reserve storage

for text data, the number of characters must be expressed as a positive

integer.

DECLARE NUMBER (A), (X), (Y), () = X 12A3,
(AA) = 0, (AB) EQUAL TO 1;
DECLARE QUANTITY (PRESS A) EQUAL TO 10 PSIA,
(PRESS B) EQUAL TO 1 PSIA;
DECLARE STATE (FLAG A), (FLAG B), (FLAG C) = ON;
DECLARE TEXT (TEXT 1) WITH A MAXIMUM OF 20 CHARACTERS,
(TEXT 2) = (REPORT PROGRAM COMPLETE);

DECLARE LISTS

A Tist is used to assign a single name to a group of related data.
The elements are numbered, implicitly, as they are entered, 1, 2, ~--
through N. Any element in a 1ist may be referenced by using the list
name and element number. In referencing, the element number may also
be a numeric variable. A Tist may not contain Function Designators.
A Tist is only for data. The four 1list statements handle the four
data types: Numeric, Quantity, State, and Text. Al1 lists require
that the comma in the feedback loop be used even when the actual data
is to be obtained during execution. A validity check is performed to
insure that "N-1 commas" are used where "N" is the number of entries.

A bypass is provided if no entries are present.
2

13

™ DECLARE KULSERIC LIST
—} DECLARE NUMERIC LIST STATEMENT

[oecLare nuseRic § r 1 F wtecer)
| LISTSTATERERT |—DECLARE—NUMERIC —LIST-] NAME | WITH9 WipseR @1
L mmmmm ﬂ me mm km mwsﬂ
DEFINES LIST NAME-———f
9 ! FEEDBACK
e REQUIRED
. (NUMBER OF
NUMBER _ ENTRIES ~1)

KURBER
PATTERN 4

T
—
o

5

|

N

J

NUMBER
- N

_____ + - NUMBER 38i'\
e W\ b
w_ _ _/

NUMBER

b i) L&\ /

14 .

DECLARE NUMERIC LIST

DECLARATION
PROCEDURAL

SYSTEM

2.2.1 Declare Numeric List Statement

Examples: DECLARE NUMERIC LIST (LIST NUM) WITH 4 ENTRIES;
DECLARE NUMERIC LIST (ROOT 3) WITH 10 ENTRIES 1.000,
1.260, 1.442, 1.587, 1.710, 1.817, 1.9.3, 2.000,
2.080, 2.154;

The DECLARE NUMERIC LIST STATEMENT is a Language Processor directive
and is used to assign an arbitrary name and numeric data character-
istics to a Tist of data. An unsigned Integer is required to indicate
the number of variables in the 1list. A bypass is provided if no
entries are present. A numeric variable may be declared to establish
an initial value of a variable by setting it to a value defined by
Number, Binary Number, Hexadecimal Number, Integer Number, or Octal

Numberr

Examples: DECLARE NUMERIC LIST (OCTAL LIST) WITH 8 ENTRIES 3, 49,
X 3B, T9, B101, 64, 3.8, .6;
DECLARE NUMERIC LIST (LIST 1) WITH 12 ENTRIES
,3997,,,421,,,822,1,10,,12;

15

| DECLARE QUANTITY LIST
j DECLARE QUANTITY LIST STATEMENT ‘

Mot ine oy e T]
b LIST STATEMENT F-DECLARE— QUANTITY=~LIST-{ NAME f=WITH -4 NUMBER ; 1
e e e 24 L. —_— 3t
' DEFINES LIST NAME
9
FEEDBACK
o e e e REQUIRED
(NUMBER OF

QUANTITY ENTRIES 1)
e e e v
1(1—— ENTRIES \ v & /

8 e

QUANTITY
= A BN py
______ -
{ QUANTITY 1 L& SR).
N 2 b
TIME VALUE f—
P

16

DECLARE QUANTITY LIST

DECLARATION
PROCEDURAL
SYSTEM

2.2.2 Declare Quantity List Statement

Examples: DECLARE QUANTITY LIST (LIST A) WITH 3 ENTRIES;
DECLARE QUANTITY LIST (VOLTAGE LIST) WITH 6 ENTRIES
28V, +0.5V -0.5V, OV, 50V, 1@ SECS;

The BECLARE QUANTITY LIST STATEMENT is a Language Processor directive
and is used to assign an arbitrafy name to a list of yariab]es of
similar data characteristics. A Quantity is a Number followed by a
Dimension. An unsigned Integer is raquired to indicate the number of
variables in the 1ist. A bypass is provided if no entries are present.
A Quantity variable may be declared to establish an initial value by
setting it to a decimal value followed by a Dimension identifier;

(see page 200 for a list of Tegal dimensions).

DECLARE QUANTITY LIST (ANALOG LIST) WITH 10 ENTRIES 200 PSIA,,,,,
6V, ,20SECS ,2HRS ,212DEGF 3

DECLARE QUANTITY LIST (QUANTITY LIST) WITH 9 ENTRIES 24V, 10A,
113 PSI, 10PCT, 2000REV, 2400FT/SEC, 2354KT,,;

17

DECLARE STATE LIST

22
DECLARE STATE LIST STATEMENT

R | ——=="1
DECLARE STATE - INTEGER
| LisTSTATEmENT I DECLARE — STATE — LisT-d WARE f-wiT<d jumBer >

DEFIRES LIST NANKE

9

FEEDBACK
E_"—“’_"E REQUIRED -
(HUMBER

STATE OF ENTRIES 1)
R I 1 T e
1&L~— ENTRIES \\ O // ;

STATE CLOSED

FALSE

r~ 1 OFF

| STATE i

L 2 o=
OPEN
TRUE

18

2.2.3

DECLARE STATE LIST

DECLARATION gz
PROCEDURAL
SYSTEM

Declare State List Statement

Examples: DECLARE STATE LIST (FLAG LIST) WITH 10 ENTRIES;
DECLARE STATE LIST (LIST STATE) WITH 6 ENTRIES
ON, ON, ON, OFF, OFF, ON;

" The DECLARE STATE LIST STATEMENT dis a Language Processor directive

and is used to name a list of variables of similar data characteristics.
An unsigned Integer is required to indicate the number of variables in
a list. A bypass is provided if no entries are present. A State
variable may be declared for use as an internal program flag and may

be set to an initial value.

Examples: DECLARE STATE LIST (LIST A) WITH 6 ENTRIES
TRUE, OPEN, CLOSED, FALSE, ON, OFF;
DECLARE STATE LIST (LIST 3) WITH 3 ENTRIES

OPEN, OPEN, OPEN;

19

DECLARE TEXT LIST
- DECLARE TEXT LIST STATEMENT
\REV1/

[oecuare text | i

| LISTSTATEMENT |}—DECLARE — TEXT — LIST — NAME f— wiTh —————-(31
b e I

DEFINES LIST NAME /ﬂ

F— 1
1()—-—1 N b—— ENTRIES ()2
b e e 38
9 .
o e e e FEEDBACK
R REQUIRED
CONSTANT __ (NUMBER OF
' ENTRIES ~1)
2)3
¢ \ B C
()4
) °
3
%

EUST BE USED IF AN UNDECLARED ENTRY IS LONGER THAN
THE LONGEST DECLARED OR IF NO ENTRIES ARE DECLARED

rmm-—“

4 WITH — A — KAXIMUM — OF —d INTEGER & CHARACTERS
L _MUMBER)

TEXT CONSTANMT

1 cHARACTER
| TEXT CONSTART } (i TsTriNG 11%)

IS | SR |

NO PARENTHESIS ALLOWED
BLANKS ARD COMMENTS
ARE SIGRIFICANT

20

2.2.4

DECLARE TEXT LIST

DECLARATION

PROCEDURAL

SYSTEM

Declare Text List Statement

Examples: DECLARE TEXT LIST‘(INPUT) WITH 2 ENTRIES WITH A
MAXIMUM OF 25 CHARACTERS;
DECLARE TEXT LIST (OPERATOR INSTRUCTION) WITH 2
ENTRIES (PLACE SWITCHES INDICATED),
(*PREFLIGHT TM CAL IN PROGRESS *);

The DECLARE TEXT LIST STATEMENT is a Language Processor directive
and is used to name a-list of Text data. An unsigned Integer is
required to indicate the number of variables in the Tist. A bypass
is provided if no entries are present. A Text variable may be dec-
lared for use as a program message or may be used to reserve storage
for input messages during program execution. If a Name is used to
reserve storage, the number of characters is expressed as an unsigned
Integer. The unsigned Integer is required only if an undeclared

entry is Tonger then the 1ongést declared message.

Examples: DECLARE TEXT LIST (DISPLAY MESSAGE) WITH 5 ENTRIES
(*PREFLIGHT TM CAL IN PROGRESS*),
(*PREFLIGHT 00 LEVEL IN PROGRESS*),
(*PREFLIGHT 25 LEVEL IN PROGRESS*),
(*PREFLIGHT 50 LEVEL IN PROGRESS*),
(*PREFLIGHT 100 LEVEL IN PROGRESS*);

21

DECLARE TEXT LIST

DECLARE TEXT LIST (INPUT OUTPUT MESS) WITH 6 ENTRIES , , , ,
(PLACE ABOVE SWITCHES AS INDICATED), (SWITCH SCAN IN
PROGRESS) WITH A MAXIMUM OF 36 CHARACTERS;

22

23

FUNCTION DESIGNATOR

Ve

R
r R SN TR RN
LETTER
mmmmmm 43
g- FUNCTION ‘E < , b e e >
DESIGRATOR __ ¥ S ~
mmmmmm r 1
NUMERAL
. |
ASTERISK \ # /
COMMA 9
EQUALS =
MINUS -
PERIOD ®
PLUS +
SLASH /

24

2.3

DECLARE TABLES

A table is used when a group of Function Designators is, coTlectively,

assigned a name. Function Designators are system names and are made

available in the Language Processor by the Data Bank. A tab]e can be

visualized in the conventional row/column format with Function Desig-

nators framing the rows and with Column Names heading the columns.

These items are fixed items and may not be manipulated during execution.

Data is entered via a Declaration Statement a row at a time. There is

a comma required to signal the end of the row. This assures unique

definition of a table without data columns and a table of one data

column where the data is not specified.

A Table Name must be unique,

that is, a Table Name can reference only one table within a GOAL com-

ponent. Cotumn Names must also be unique within a GOAL component.

Row 1

Row 2

Row 3

Row Rn

TABLE NAME
1 2 3 Cn
COLUMN COLUMN COLUMN COLUMN
NAME NAME NAME NAME
1
FUNCTION data data data data
DESIGNATOR 1 12 13 N
2 'L
FUNCTION data data data data
DESIGNATOR 21 22 23 ZN
3 .
FUNCTION data data data data
DESIGNATOR 31 32 33 3N
) ‘Rn "
FUNCTION data data data data
DESIGNATOR R1 R2 Y R3 RN
' 1 2 3 Cn
Column
Numbers

25

(19
\rev e/

DECLARE NUMERIC TABLE

DECLARE NUMERIC TABLE STATEMENT

DECLARE NURERIC
| TABLE STATERERT | DECLARE — RUMERIC ~—— TABLE—f MAWE b 7y —81
L- uuuuu %?J L-—mm uJ

DEFINES TABLE NAKE

3 “IHTEGER I “ntecer
e I HumBER |— ROWS — AND~| KUMBER |— COLUMNS " 2
FEEDBACK
 REQUIRED
9 (KUKBER
COLUMNS =1)
- rm—_~1
2 TITLED HAME § O WITH — ENTRIES -.83
Lt /
9
FEEDBACK | FEEDBACK
== REQUIRED REQUIRED
(NUMBER (NUMBER
NUMBER 485"\ COLUMNS -1) | ROWS -1)
—— | S rd
r FUHCTION 1 JVL °
| DESiGNATOR —)
——— ™ woneer
PATTERN

/

NUMBER OF COLUMNS MUST BE ZERO

26

2.3.1

DECLARE NUMERIC TABLE

DECLARATION

PROCEDURAL

SYSTEM

Declare Numeric Table Statement

Examples: DECLARE NUMERIC TABLE (HIGH LOW RUN) WITH 3 ROWS AND
4 COLUMNS TITLED
(HIGH), (LOW), (RUN), (CUR) WITH ENTRIES
< E1 GG CHAMBER P> , 1000.1, 1.0, 500.0,
< E2 GG CHAMBER P > , 1001.2, .9, 500.0, ,
< E3 GG CHAMBER P > , 999.8, 1.2, 500.0, ;

The DECLARE NUMERIC TABLE STATEMENT 1is used to assign an arbitrary
name to a numeric table containing information pertaining to Specified
Function Designators. The Table Name must be unique within a GOAL
component. A Table Name is an internal variable and is used as an
indirect linkage for the Function Designators included in the table.
For example: A READ STATEMENT that refers to a specific Table Name
will read the test conditions of the activated Function Designators

contained within the table, and not the contents of the table.

Unsigned Integers are required to indicate the number of rows and
cotumns contained within a table. The Language Processor will verify

that the indicated numbers equal the number of rows and columns used.

Columns may or may not be titled, but if one column is assigned a
name all other columns within the table must be titled. Column Names

must be unique. Columns within other tables in the same GOAL component

7 27 .

DECLARE NUMERIC TABLE

cannot have the same Column Name.

A Function Designator is required to start each row and may be used to

identify that row.

Data Tocations within a table may be set to an initial value as des-
cribed by the Number or Number Pattern syntax diagrams. Data locations
may also be used to reserve storage which is to be used during pro-

gram execution to save data.

Examples: DECLARE NUMERIC TABLE (LIMIT TABLE) WITH. 5 ROWS AND 2
COLUMNS TITLED
(COL 1), (COL 2) WITH ENTRIES
< E1 LOX TURBINE P>, 2000.1, 0.4,
< E2 LOX TURBINE P>, 2010.2, 0.2,
< E3 LOX TURBINE P>, 2002.4, 0.6,
< E4 LOX TURBINE P>, 2003.1, 0.2,
< E5 LOX TURBINE P>, 2011.9, -0.1;

28

29

DECLARE QUANTITY TABLE

DECLARE QUANTITY TABLE STATEMENT

oo quavrin S T i
| TABLE STATERENT b DECLARE-—QUANUTY—-TABLE& NAME Lwnn . NUMBER 4 h)l
DEFINES TABLE NAME j
I—m—- XU N j

1d—— ROMS ——— AND ——f ulipen o cotums ——2
L. 3y

FEEDBACK REQUIRED
(NUMBER COLUMHNS -1)
r-w- n_ﬂ
2 TITLED NARE WITH -— ENTRIES --8 3

L SRR ASTHERR SOOI
b
FEEDBACK FEEDBACK
r-_—-—---I REQUIRED REQUIRED
(RUMBER (NUMBER
QUANTITY COLUMNS 1) ROWS -1)

> o

e 3

r—
3 FUNCTIOR 9 o o
DESIGHATOR ~ / ~

8
*—— NUMBER OF COLUMNS MUST BE ZERO

30

DECLARE QUANTITY TABLE

DECLARATION

T

PROCEDURAL

SYSTEM

Declare Quantity Table Statement

Examples: DECLARE QUANTITY TABLE (MAIN FUEL FLOW) WITH 5 ROMWS
AND 3 COLUMNS WITH ENTRIES

< E1 MAIN FUEL > , 0.1 PPS, 300.1 PPS,

< E2 MAIN FUEL > , 0.3 PPS, 300.2 PPS,

< E3 MAIN FUEL > , 0.4 PPS, 300.1 PPS,

< EA MAIN FUEL > , 0.2 PPS, 300.1 PPS,

< E5 MAIN FUEL > , 0.1 PPS, 299.8 PPS, ;

DECLARE QUANTITY TABLE (TURBINE DATA TABLE) WITH 2 ROWS
AND 4 COLUMNS TITLED (TURBINE OUTLET PRESSURE),
(TURBINE INLET PRESSURE), (TURBINE OUTLET TEMP),
(TURBINE INLET TEMP), WITH ENTRIES<CLOX TURBINE

NO1> ., ,, < LOXTURBINENO 2> , , , , 3

The DECLARE QUANTITY TABLE STATEMENT is used to assign an arbitrary
name to a table of variables with similar data characterisitcs. A
Table Name must be unique as are all other names within a test pro-
gram. An unsigned Integer is required to declare the number of rows
within a table. A second upsigned Integer is necessary to declare the
number of columns within a table. The Language Processor will insure
that the number or rows and columns declared equal the number of rows

and columns used.

Data positions within a table may be set to an initial value as

31

DECLARE QUANTITY TABLE

described by Quantity syntax diagram.

S*orage may be declared for use during program execution by taking the

bypass around the data entry.

Examples: DECLARE QUANTITY TABLE (EDS SWITCH POINT) WITH 3 ROWS AND

2 COLUMNS TITLED
(HIGH), (LOW) WITH ENTRIES

< EDS SWITCH POINT 1> , 28.0V, 0.0,

<EDS SWITCH POINT 2 > , 28.1V, 0.1,

< EDS SWITCH POINT 3 > , 28.3V, 0.2;

DECLARE QUANTITY TABLE (TIME) WITH 2 ROWS AND 2 COLUMNS TITLED
(CLOCK), (GMT) WITH ENTRIES

< CLOCKT > , -2 HRS 30 MINS, 10 HRS 30 MINS,

< cLock2>> , ~THR 30 MINS, 12 HRS 30 MINS;

32

33

DECLARE STATE TABLE

W DECLARE STATE TABLE STATEMENT

gM'DECLARE S“i'l\'l'Emi ' r '“g rmlﬁngER B)
| TABLE STATEMENT | DECLARE —STATE~ TABLE <4 NAKE i Wit 1 HUMBER 1

DEFINES TABLE NARE

™ wrecen |
ROWS ——— AND ———H& LiuBEr .. 0 COLUMNS —————ez
L. 2

v:r

9 FEEDBACK REQUIRED
F——=" (KUMBER COLUMNS ~1)
2 TITLED NAKE WITH - ENTmES_() 3
47y /
9
FEEDBACK FEEDBACK
o o REQUIRED REQUIRED
r 1 (NUMBER (NUMBER
STATE COLUMNS -1) | ROWS =1)
e L4\ |/ S |
FUKCTION / yd .
3 DESIGNATOR 9 9 J 9
L T j

L— NUMBER OF COLUMNS MUST BE ZERO

34

2.3.3

Declare State Table Statement

Examples: DECLARE STATE TABLE (THRUST 0OK)

DECLARE STATE TABLE

DECLARATION

[

PROCEDURAL

SYSTEM

WITH 5 ROWS AND 3

COLUMNS

TITLED (THRUST 0K), (THRUST NOT OK), (STATE) WITH ENTRIES

< THRUST OK TE1>
< THRUST OK 1E2_>
< THRUST OK 1E3>
< THRUST OK 1E4>
< THRUST 0K TE5 >

3

3

b

s

&

ON, OFF,
ON, OFF,
ON, OFF,
ON, OFF,
ON, OFF,

]

The DECLARE STATE TABLE STATEMENT is used to assign an arbitrary name

to a table of variables with State data characteristics.

A Table Name

must be unique. A Table Name is an internal variable and may be used

in an External Test Action Statement (see Procedural Statement) to

reference test points on the system under test.

For example:

A Set

Statement that refers to a Table Name will result in the activated

Function Designators listed in that table being issued to the system

under test in the indicated state.

An unsigned Integer is required to declare the number of rows, an

additional unsigned Integer is required to declare the number of

columns.

Columns may or may not be titled, but if a cd]umn is assigned a name

aill other columns within the table must be titled. Column names must

35

DECLARE STATE TABLE

be unique.

The data positions of a table may be set to an initial state. The data
positions may have data characteristics as described by OPEN, CLOSED,

TRUE, FALSE, ON, or OFF.

Examples: DECLARE STATE TABLE (CONTROL SOLENOID TABLE) with 3 ROWS

AND 2 COLUMNS WITH ENTRIES

< E1 HE CONTROL SOLENOID > , , ,

< E2 HE CONTROL SOLENOID> , , ,

< E3 HE CONTROL SOLENOID> , ,

DECLARE STATE TABLE (LIMIT SWITCH) WITH 10 ROWS AND 4
COLUMNS WITH ENTRIES

< LIMIT SWITCH FUEL NO 1E12> , ON, OFF, ON, OFF,

< LIKIT SWITCH FUEL NO 2E1>> , OFF, ON, ON, OFF,

<« LIMIT SWITCH FUEL NO 1E27> , ON, OFF, ON, OFF,

< LIMIT SWITCH FUEL NO 2E2°> , OFF, ON, ON, OFF,

< LIMIT SWITCH FUEL NO 1E3> , ON, OFF, ON, OFF,

< LIMIT SWITCH FUEL NO 2E3°> , OFF, ON, ON, OFF,

< LIMIT SWITCH FUEL NO 1E4>> , ON, OFF, ON, OFF,

< LIMIT SWITCH FUEL NO 2E4> , OFF, ON, ON, OFF,

< LIMIT SWITCH FUEL NO 1E5> , ON, OFF, ON, OFF,

< LIMIT SWITCH FUEL NO 2E5 > , OFF, ON, ON, OFF;

36

37

I "DECLARE TEXT | 5_—_""} B et 1
; TABLE [DECLARE = TEXT —TABLE~ NAWE ¢ WiTH~d N raen . = ROUS -?1
L STATEMENT 25, et T ey
DEFINES TABLE NAME =
FEEDBACK REQUIRED
@ (NUMBER COLUMNS - 1)
mmmmm o cm s s e g ’
1‘2-1&940 -l 'gggggg }-«cowmm TITLED=&! NAME ' WiITH— ENTRIES —7)2
—_—— \ e
FEEDBACK REQUIRED
(NUMBER ROWS -1
9
! mmmmmmm FEEDBACK REQUIRED
i TEXT i {NUKBER COLUMNS ~1)
PR - L CONSTART 79, g N
LT FuNeTON (o [=== °
DESIGRATOR . 9 .
L 33 9
______ e
INTEGER
WITH — A MAX@M— OF-: RUMBER 3 §jt--cummcmres

KUST BE USED IF AN UNDECLARED ENTRY IS LOKGER THAN
THE LONGEST DECLARED OR IF NO ENTRIES ARE DECLARED

i RUMBER OF COLUMNS MUST BE ZERO

TEXT CONSTANT

| TEXT CONSTANT } (i CH?T%:}%ER ")
| R |} Ty

NO PARENTHESIS ALLOWED
BLAKKS AND COMMENTS
ARE SIGNIFICANT

38

"DECLARE TEXT TABLE

DECLARATION

PROCEDURAL
SYSTEM

2.3.4 Declare Text Table Statement

Examples: DECLARE TEXT TABLE (MESSAGE TABLE) WITH 2 ROWS AND T COLUMN
TITLED
(MESSAGE A) WITH ENTRIES
< 224 DISPLAY B35 > , (SWITCH SCAN IN PROGRESS),
< 224 DISPLAY B42 > , (PLACE ABOVE SWITCHES AS INDICATED);

The DECLARE TEXT TABLE STATEMENT is used to assign an arbitrary name

to a table of messages. A Table Name must be unique.

An unsigned Integer is used to declare the number of rows, another un-
signed Integer is used to declare the number of columns. The Language
Processor will verify that the number of rows and columns declared

equal the number used in the table.

Columns may be assigned an arbitrary name, but if one column is titled
all columns in the table must be titled. Column Names are used as

an identifier for a specific column, and must be unique.

A Function Designator is required to start each row and is used as an

<identifier for a specific row.
A Text Constant may be declared and used as a precanned message.

Storage may also be reserved for execution time input, by taking the

bypass around the Text Constant entry. If the number of characters if

39

DECLARE TEXT TABLE

an undeclared entry is greater than the number of characters in a de-
clared message, the maximum number of characters in the longest unde-
clared message must be entered as an unsigned Integer. Also, if no
entries are present in the table, the maximum number of characters

must be indicated.

Examples: DECLARE TEXT TABLE (INPUT TABLE) WITH 2 ROWS AND 1 COLUMN
TITLED
(INPUT MESSAGE) WITH ENTRIES
< 224 DISPLAY A21> ,
<224 DISPLAY A28_> , WITH A MAXIMUM OF 32 CHARACTERS;
DECLARE TEXT TABLE (MESSAGE TABLE NO. 1) WITH 4 ROWS AND
2 COLUMNS TITLED
(MESS 1), (MESS 2) WITH ENTRIES

< 224 MESS A32 > , ; ,
< 224 MESS A31 >, , ,
< 224 MESS A32 > , , ,
< 224 MESS A33 > , .

WITH A MAXIMUM OF 10 CHARACTERS;

40

4

—
|

APPLY ANALOG STATEMENT B
- " ISSUE DIGITAL PATTERN STATEMENT .'}

~ AVERAGE STATEMENT 1

’ e - - T T s e e -1

T T L Ay eTATEmENT 1

|

r

r

I STATEMENT

1 _ __ __STOPSTATEMENT = |

r TERMINATE STATEMENT j
») 3 REPEAT STATEMENT |

-

=

-

L

=

L

r

CONCURRENT STATEMENT __—_Il

TREl FACE CaRAIBRENT STaTERENT)

L jEEEAS_E_C%CUEEENLSTﬂET@T_ .

ACTIVATE TABLE STATEMENT |

P |

INHIBIT TABLE STATEMENT

L iy
_ _ PERFORY PROGRAN STATEMENT __ |
L
L.

3.0

3.1

SECTION III, PROCEDURAL STATEMENTS
GENERAL -
Procedural Statements are executable statements. These statements
control the testing sequence by issuing commands, acquiring data from
the system under test, controlling the internal program execution

sequence, and manipulating data.

The Procedural Statements are functionally grouped and are presented
in the following order:

EXTERNAL TEST ACTION

INTERNAL SEQUENCE CONTROL

ARITHMETIC/LOGICAL OPERATIONS

EXECUTION CONTROL

INTERRUPT CONTROL

TABLE CONTROL

PROCEDURAL STATEMENTS PREFIX
The Procedural Statements are the only statements that may have a
statement prefix. It is this prefix that allows a statement to have

a Statement Number and to be executed based on a variety of conditions.

Because the statement prefix is optional for any Procedural Statement,
the composition and capabilities of the statement prefix are discussed
priér to‘the individual Procedural Statement. The Procedural State-
ment Prefix has three optional capabilities: the Stétement Number,

Time Prefix, and the Verify Prefix.

The Statement Number, if used, must be the first entry in a statement.
It precedes the Time Prefix and the Verify Prefix. Statement Numbers

are used to identify a specific Procedural Statement, and therefore,

43

3.1.1

3.1.2

must be unique. The Language Processor will flag as an error any mul-
tiple defined Statement Numbers. Hoﬁever, a Statement Number may be
referenced as many times as necessary. By convention, it is recom-
mended that Statement Numbers be used in ascending order. This will

enhance procedure review.

The Time Prefix cannot precede a Statement Number. The Time Prefix
provides for synchronization of execution of a Procedural Statement
with an exterﬁa1 clock. Synchronization is achieved by delaying
execution until a specific Time Value is reached or passed. The

remaining portion of the statement may contain a Verify Prefix.

The Verify Prefix, if used, cannot precede a Statement Number or Time
Prefix. The Verify Prefix provides a conditional transfer capability

depending upon the results of a comparison type test.

External Test Action

The External Test Action Statements are those statements that provide
an interface with the system under test. This group of statements
also includes the necessary statements for communication between test
engineer/computer system, computer system/computer system, and test
system/computer system. The External Test Action Statements are sub-

divided into Command and Response categories.

Command Statements

The Command Statements are those statements that stimulate the system
under test. The test points on the system under test are defined as
Function Designators. Function Designators are items which interface

via the Data Bank with the system under test. A test point receiving

44

a comménd issued by this subgroup m&st be specified as a load type
Function Designator. ‘A Function Designator used in the RECORD DATA
STATEMENT may be either a Toad or system type, depending upon the
individual test point. The External Designator syntax diagram allows

referencing of either a single Function Designator or a group of

Function Designators.

The Command Statements consist of the following statements:
APPLY ANALOG STATEMENT
ISSUE DIGITAL PATTERN STATEMENT
SET DISCRETE STATEMENT
RECORD DATA STATEMENT

45

' APPLY
—~ 7 APPLY ANALOG STATEMENT

P o e e

PROCEDURAL
SﬁgTEMEﬂT
S, REFIX &7
 aeely b
| ANALOG } D,
| _STATEMENT 24 [€
3 E
=71
QUANTITY
L_.....____.,.,S._gj A SRR TS S
SEND 1
1(;<<:r 10 EXTERKAL ¢ o
APPLY DENGNATDR:Ei 9
rn—u_mm- EDRERR A WRGSE yren
INTERNAL B
: NAME i
)
r-—umm-—l
XTE
PRESENT- VALUE - OF 4 DEESfGF?f}Qé'R k- T0 ()z
L-—-———-ﬂ
r—_—-—T
2 EXTERNAL g °
.
W QUANTITY
r— 1 -
S NUMBER ~ p———f DIMENSION L
48 21
TIME VALUE f—
| I ||

46

APPLY

DECLARATION
PROCEDURAL

SYSTEM

3.1.2.1 Apply Analog Statement

Examples: APPLY 10V T0 < RELAY NO 101 > ;
SEND (POWER) TO < HYDRAULIC SYSTEM >

The APPLY ANALOG STATEMENT provides for an analog stimuli to be sent
to a system under test. A Quantity or an Internal Name identifying a
Quantity may be sent to the system under test by this statement. The
Language Processor will verify that the data referenced in this state-
ment was previously declared to be a Numeric or Quantity type. One
Quantity may be specified, and it may be sent to one or more Function
Designators, or several Quantities may be specified and sent to several
Function Designators. In this option the number of Quantities must
equal the number of Function Designators in the statement, or in
referenced tables. The quantities will be applied, in the order in
which they appear in the statement, to the Function Designators as
they appear in the same statement, or in referenced tables. The
Language Processor will verify a one-to-one reTationshiﬁ of Function
Designators to the Quantities to be applied. It will also verify

that the listed Function Designators in this option are load type
Data Bank resident jtems. When this statement is used to set the
present value of one device to another, the processor will verify the
devices are analog type devices and then generate an equivalent "READ"

from the first Function Designator followed by a "SEND" to the

47

APPLY

corresponding Function Designator. The first Function Designator(s)
jn this option must be specified in the Data Bank as sensor types.

The second Function Designator(s) must be specified as load types.

Examples: SEND 10V TO < POWER SELECTOR 1>, <{POMER SELECTOR 2> ;
APPLY 10V, 5V, 15V T0 <CPOWER BUS 1> , < POWER BUS 2>,

< POUER BUS 3> ;

APPLY PRESENT VALUE OF < POKER BUS 1> T0 <CPOWER BUS 2> ;

48

49

| ISSUE
 ISSUE DIGITAL PATTERN STATEMENT

\eEve/

STATENEHT
mmmmm REFIX 57

T issue pigiTAL b |
| PATTERN ! Y

STATEMENT %]

5 E
r‘“_-“-._l
NUMBER
PATTERN
L m RN CINE WEIR TR
p] A4 r EXTERNAL_‘EE ®
L IUE T0 DESIGRATOR ., =
3; 9
INTERHAL
i HAME
L 31

exrermae Vo T exrernas |

I EXTERNAL EXTERMAL |
PRESENT~VALUE-OF{ ppsignaTOR I?To“i DEsmﬁATORSIF‘;

50

ISSUE

DECLARATION
PROCEDURAL

SYSTEM

3.1.2.2 Issue Digital Pattern Statement
Examples: ISSUE < S4B SWITCH SELECTOR CH 59 > ;
ISSUE B 111 110 101 100 011 T0 < PANEL AB > ;

The ISSUE DIGITAL PATTERN STATEMENT issues a digital pattern to a
system under test. A Number Pattern or an Internal Name declared as

a Mumber Pattern may be issued to the system under test. ThebLangUage
Processor will verify that the referenced Internal Name was previously
declared as numeric déta. If more than one Number Pattern is to be
issued to more than one Function Designator, the first Number Pattern
will be issued to the first Function Designator, etc. In the case of
a table the first Number Pattern specified will be issued to the first
Row Designator. This type of one-to-one correspondence will continue
until the last Number Pattern is issued. An inactive row will not be
issued. One Number Pattern may be issued to several Function Desig-
nators. When this statement is used to issue. the present value of one
device to another, the processor will verify the deviées are capable
of this type operation and then generate an equivalent "READ" from the
first Function Designator(s) followed by an "ISSUE" to the correspon-

ding Function Designator(s).

51

ISSUE

Examples: ISSUE (OCTAL SEVENS), (OCTAL ONES) TO
< pANEL LIGHTS 32 >, < PANEL LIGHTS 31> ;
ISSUE PRESENT VALUE OF<CcH 63> T0<cH 11> 3

52

‘53

SET DISCRETE STATEMENT

I proCEDURAL §
STATEMENT
| SETDISCRETE | 1
STATEMENT ¢ ¢
L
OPEN r TIME l
\ FOR

CLOSE = —="7 VALUE 81
la EXTERMAL [@
TURN ON [DCSIGRATOR , L

TURN —OFF o e D
£ :
s, v e FOR'ﬁ TIKE ..E
r 1 VALUE
STATE e e s
EXTERNAL 105 g ®
DESIGRATOR)
INTERNAL
SET
) i -

. _ EXTERNAL EXTERHAL o
PRESENT = VALUE - OF —f DES!GNATORslﬂ’-TO"’% Desmﬁmoasl&""_—g

STATE CLOSED

FALSE
" 1 OFF
| STATE }
L 7 o
OPEN

TRUE

54

SET

DECLARATION
PROCEDURAL
SYSTEM

3.1.2.3 Set Discrete Statement

Examples: SET < POWER SELECTOR > TO (PRELAUNCH);
TURN ON < CUTOFF RESET > FOR 3 MSECS;
OPEN < LOX VENT VALVE 1> , < LOX VENT VALVE 2> ;

The SET DISCRETE STATEMENT allows discrete (ON/OFF) type Sfates to be
sent to the system under test. The Function Designator must be speci-
fied as a }oad discrete type command. This fs_the only Command State-
ment that allows a Time Value controlling the duration of the action.
After the time delay has expired then the complement state is issued.
The host component will then continue execution with the next sequen-

tial statement.

This statement can be used to control such items as panel indicators,
equipment power, and other bi-state units, where a very small Time

Value is required.

During automatic execution, this statement can also be used in setting
system indicators (flags) to be used by another pfogram at some sub-

sequent point in testing.

In the Data Bank the Language Processor will verify that data refer-

enced in this statement was previously declared to be State type.

%his statement may be used to set a test clock to a specified Time

55

SET

Value. Time devices are special and are specified accordingly in the

Data Bank.

When the statement is used to set the present value of one device to
another, the processor will verify the devices are discrete type de-
vices and then generate an equivalent "READ" from the first Function
Designator{s) followed by a “SET" to the corresponding Function Desig-

nator(s).

The key words "TURN ON" and "TURN OFF" are not valid for mechanical

type Function Designators.

Examples: § 104 AFTER < CLOCK > IS -1 HRS, OPEN<CHELIUM SUPPLY™> ;.
STEP 5 TURN ON (THRUST OK IND) FUNCTIONS;

56

57

RECORD

'

I ProcEDURAL |
STATEMENT
T —E /DisPLAY
{ DATA i PRINT 1
—c
.
TEXT —4
CONSTANT
memmz_?j
W/ § INTERNAL To—} EXTERHAL ®
< HAME DESIGKATOR o
? L
DEFAULTS
t—-sun OF-LINE TO SYSTEM DEVICE
! INDICATOR

EXTERNAL EXTERNAL ®
PRESENT —VALUE—OF —{ prgiahaToR T0—{ pESIGNATOR ®

DEFAULTS
.. TO SYSTEM DEVICE

58 .

RECORD

DECLARATION

PROCEDURAL

ki

SYSTEM

-3.1.2.4 Record Data Statement

Examples: DISPLAY TEXT (ALL SYSTEMS READY FOR POWER TRANSFER) TO
<eRT 9> ;

RECORD (INTERNAL TIME) TO < MAG 2-5 > ;

- The RECORD DATA STATEMENT provides for the output of information to
selected peripheral equipment. This includes formating and displaying
of a message containing quantities whose values are dependent on run
time conditions. Information'may be recorded on a CRT display, mag-
netic tape, a printer, or any other recording device. The Language
Processor will verify that the Function Designators referenced in the
RECORD DATA STATEMENT are compatible with the key words Print and Dis-
play. When RECORD is used the output device is determined by the
Function Designator. For example, the use of the key word, Print, with
the Function Designator, < LINE PRINTER >, is considered a legal
combination(s). The legal combination{s) is system dependent and

therefore cannot be given at this time.

If several messages are specified within this statement, as provided

for by the feedback loop, all messages will be recorded on all refer-
“enced Function Designators. When this statement is used to record the
present value of one device to another, the processor will verify the

devices are capable of inputing data to the computer and then it will
generate an equivalent "READ" from the first Function Designator followed
59

RECORD

by a "RECORD" to the corresponding Function Designator.

The comma indicates an end of Tine and allows for formatting of output
data. The comma will not be recorded, but the data following the

comma will be started on the next line.

Examples: RECORD TEXT (POWER TRANSFER TEST COMPLETE),
TEXT (INTERNAL MEASUREMENTS WERE RECORDED AS),
TEXT (VOLTAGE=) (INTERNAL VOLTS),
TEXT (AMPS=) (AMP) TO < LINE PRINTER > ,

<106 TAPE> ,<CRT 27>

RECORD PRESENT VALUE OF < cDc > T0 <CRT 12> ,

< LINE PRINTER > 3

60

3.1.3

Response Statements

The Response Statements are those statements that acquire data from the
system under test. The test ppint used for the acquisition of data must
be specified as a sensor type Function Désignator. A Function Desig-
nator used in the REQUEST KEYBOARD STATEMENT may be either a sensor

or system type.

The following statements make up the Response subgroup of the Test
Action Statements:

AVERAGE STATEMENT

READ STATEMENT

REQUEST KEYBOARD STATEMENT

6l

™ RVERAGE
(4 AVERAGE STATEMENT

\Evy

T procEDURAL 1
STATEMERT

e e e e s PREFIX 157 — s o e
r AVERAGE mﬁ L..__,...__.Jﬁx\ r INTEGER o
V' sTatewent F AVERAGE4 jumBER &-READiNGS—OF-()l
L_ mmmmm ﬂ . L—-_“mmﬂ

PO B I conn 3

EXTERNAL INTERNAL
18—'& DESIGNATOR ©— AND — SAVE — S ——f " jaye p—
L________m___.’:ll L 39

62

AVERAGE

DECLARATION

PROCEDURAL

SYSTEM

3.1.3.1 Average Statement

Examples: AVERAGE 10 READINGS OF <CIU COOLANT TEMPERATURE > AND
SAVE AS (COOLANT TEMP);
AVERAGE 5 READINGS OF< E4 HELIUM TANK P >> AND SAVE
AS (HE TANK PRESSURE); |

The AVERAGE STATEMENT provides a convenient means of averaging a mea-
surement or a group of measurements acquired from a system under test.
The result of this statement is defined as a simple mathematical
average, the sum of the measurements of a test point divided by the
number of times the test point is read. The result of this statement
is stored as an Internal Name. There is no provision to specify a
time delay between readings. The time delta between readings is a
function of the test system. If a time deiay is required between
measurements, the READ STATEMENT and LET EQUAL STATEMENT used in con-
nection with the DELAY STATEMENT can be used to achieve these results.
The AVERAGE STATEMENT should be used only on a measurement that is

relatively stable.

If a table of Function Designators is to be read and averaged, the
active Function Designator of each row is acquired the number of times
indicated and averaged. Readings of Function Designators, listed in

ia table, are done sequentially. It is not necessary to save the results

in the same table that the'Funétion Designators are in. The average
63

AVERAGE

value of each active Function Designator is stored in the identified
column, in a row corresponding to its row number, if a row is not
specified. The Language Processor will verify that thé data charac-
teristics of the Function Designator is compatible with the data
characteristics of the Internal Name. The data characteristics of an
Internal Namé are described by é Declaration Statement, while the
data characteristic of a Function Designator is defined‘in the Data
Bank. An unsigned Integer is required to indicate the number of

readings to be averaged.

Examples: AVERAGE 10 READINGS OF (AVERAGE TABLE) AND SAVE AS
COLUMN 3;
AVERAGE 20 READINGS (ANALOG TABLE) AND SAVE AS (AVERAGE
TABLE) COLUMN (RESULTS);

Caution: The capability of this statement should be recognized as
simple and restrictive with uncertain time deltas between

readings.

64

65

) READ STATEMENT

[ProcEDURAL |
STATE RERT :
PREFIX 57 |
mmmmm e REFIX READ S
r ST
. 4 R,
STATEMENT
31
L il MEASURE e e e 2
mmmmm
N Ve o INTERNAL | .
1 AND AS NAME

I G WK e el

66 -

READ

DECLARATION
PROCEDURAL

SYSTEM

3.1.3.2 Read Statement

Examples: READ < PC STAGE INLET PRESSURE > AND SAVE AS (INLET
PRESSURE) ;

MEASURE < IU COOLANT TEMPERATURE > AND SAVE AS (COOLANT
TEMP) ;

The READ STATEMENT acquires data from the system under test and stores
that data as internal program data. Mathematical calculations can
then be performed on the internal data if desired. This data may also

be used for recording purposes.

The Function Designator must be described in an active Data Bank at

the time the READ STATEMENT is compiled by the Language Processor.

The data characteristic of the Function Designator, as described in the
Data Bank, must be compatible with the data characteristics of the

Internal Name as described by a Declaration Statement.

If one Function Designator is read into a table in which only a column
is specified, the data read will be stored in all the data locations

in the column.

If several Function Designators, as described in a table, are read, the
number of data locations must be equal to the number of Function Desig-

nators.

67

‘READ

During the execution of a READ STATEMENT irnvolving tables the first
Function Designator listed within the table will be read. This data
will be stored in the first data location in the receiiing table/Tist.
The second Function Designator will be read into the second data To-
cation in the specified column/Tlist. This procedure continues until

all Function Designators, which are active, have been read.

Caution: In reading data from a system under test into a table in
which a column and a row are specified, the data read will
be stored in the one data Jocation. This data Tocation will
contain the data from the last activated Function Designator,
Tisted in the table, after the execution of such a READ
STATEMENT.

Examples: READ (TABLE A) FUNCTIONS AND SAVE AS (CURRENT VALUE);
MEASURE < IU COOLANT TEMPERATURE > AND SAVE AS (PRESENT
STORAGE TABLE)<::IU COOLANT TEMPERATURE::>
(ANALOG COLUMN);

68

69

REQUEST
| REQUEST KEYBOARD STATEMENT

U PROCEDURAL |

STATEMENT :
REQUEST mm——
£ REQUEST -——————??1

KEYBOARD §
STATEMENT 65y

BT

TEXT
TEXT=d CONSTANT s

1

IMTERHAL
A 4 —f HAME

e e o o

RUST BE DECLARED
., AS TEXT VALUES
\ 9 /

3 ENDOFIJNElﬁnmATOR__f D
1(ENTRY ¢ 2

e il
zé}-—saom-1 DESIGRATOR I AND SAVE AS NARE o g
- 3 39

70

" REQUEST

DECLARATION

PROCEDURAL

i

SYSTEM

3.1.3.3 Requést Keyboard Statement

Examples: REQUEST TEXT (DEGREES OF PITCH) FROM < CRT 7 > AND SAVE
AS (DEGREES PITCH);

REQUEST ENTRY FROM < CUIP > AND SAVE AS (TM CAL MODE);

* The REQUEST KEYBOARD STATEMENT allows the test procedure to request
data from a test operator, and save the input for later use. One
option allows a Text Constant to be displayed or printed‘to the test
operator. A message may be inserted directly in the statement or it
may be referenced by an Internal Name. Following the display of the
message to the test operator, the test program will wait until the
operator enters an input message. The input message will then be
stored as an Internal Name, which is identified in the statement. The
REQUEST ENTRY option does not allow for a message to be displayed

and is generaliy not used in connection with a display system. This
option may be used to support a teletype, test panel, etc. To accept
inputs from a test panel, the statement would indicate by a 1ight that
the operator is to take some action. In this case the operator may

be requested to depress a labeled 1ight or position a switch on %he
test panel. This type of input will also be saved as an Infernai

Name.

The data characteristics of the Internal Name are defined by a Declar-
ation Statement. In this statement the.data characteristics cannot be

71

REQUEST

verified by the Language Processor for’compatibiTity. The system will

attempt to validate input data as to its characteristics.

Examples: REQUEST ENTRY FROM <TEST PANEL 5> AND SAVE AS (PANEL 5
INPUTS) COLUMN 3;
REQUEST TEXT (CAL DATA FOR ENGINE NO. 2 STARf'TANK) AND
SAVE AS (CAL TABLE) ROW 1 COLUMN 33

72

3.2

INTERNAL SEQUENCE CONTROL
The Internal Sequence Control Statements are those statements that con-
trol the order in which statements are executed. The group of state-
ments that make up the Internal Sequence Control Statements are:

DELAY STATEMENT

GO TO STATEMENT

STOP STATEMENT

TERMINATE STATEMENT

REPEAT STATEMENT

73

DELAY STATEMENT

rmmmsmm

PROCEDURAL]

STATEMENT E LA
DELAY | mmmwm\[. -
3 .
| STATEMEWT " L RE R

WAIT P 11

L“‘“mmmmmug

P EXTERNAL amcommmmm%
1()"" uNTIL — pESIGRATOR TEST b

8 8

r
i COMPARISON

e 14 "
LImIT

]

4 NS ETIUR CXEYYR SUSTER
COMPARISON TEST P ReLaTionaL |
FORMULA
-1 L |

74

3.2.1

DELAY

DECLARATION
PROCEDURAL

SYSTEM

Delay Statement

Examples: DELAY 5 SECS;
WAIT UNTIL < SIVB 3200 PSIA SUP VENT> IS OPEN;

The DELAY STATEMENT allows a delay in the execution of the next se-

quential statement. During the time the specified delay is in effect,
no statements in the component, in which the DELAY STATEMENT appears,
will be executed. Execution always continues with the next sequential

statement.

Both conditional and unconditional delays are allowed. In the condi-
tional delay option, the Language Processor will verify that the speci-
fied Function Designators are compatible with the type of comparison
testing required. It will then generate an equivalent "READ“ from the
specified Function Designators. During execution the data acquired
from the "READ" is then compared to the conditions specified in the
Comparison Test. If the conditions are not met, the "READ" is performed
again. The new data is then compared. This process continues until
the conditions are met or until the Time Value has expired, provided
that a Time Value Qas specified. |

The unconditional delay option will cause a delay in the execution of

a component, at least, until a specified time has expired.

75

DELAY

Examples: WAIT 10 SECS OR UNTIL <(GN 750 PSIA BLEED VLV > IS
CLOSED;
DELAY 5 MIN OR UNTIL < CLOCK >> IS EQUAL TO -3 HRS 30
HINS;

76

17

™ 0TO
GOTO STATEMENT .

[ProceDuRAL |
STATEMENT
_____ PREFIX 57, — e e e
r GOTO mE e e — r STEP
STATEMENT | G0 — TO —] NUMBER _ f—uw—2
I L) L 23 ?

STEP NUMBER

148

= - P ——\ | T
I STEP NUMBER b——C 4] NUMERAL é———é-—
L 5 s —/ b 50

L $" WILL BE PRINTED AS “STEP™

78

3.2.2

GO TO

DECLARATION
PROCEDURAL i
SYSTEM

Go To Statement

Examples: GOTO S20;
GO TO STEP 30;

The GO TO STATEMENT provides unconditional branching within a test
program. After executing a GO TO STATEMENT, control is passed to the
statement that is referenced by the Statement Number, following the
verb. A GO TO STATEMENT is generally used at the end of a sequence

of statements that represent a Togical blocking of a test function,

and acts to direct the computer to some other portion of the test pro-
gram. Statement Numbers specified by a GO TO STATEMENT must be defined
within the boundaries of a GOAL component; i.e., "local” to the com-
ponent. A GO TO STATEMENT cannot be used to transfer control to a
statement that is outside the boundaries of the component, as in a

subroutine.

The letter "S" may be used as an abbreviation for the word STEP and

it will be printed as STEP by the Language Processor.

79

. REPES
(B4 RepEaT STATEMENT . .

I PROCEDURAL ©
STATERENT
P epear | L———-4 = THROUGH
Vo statement ! REPEAT NUMBER _ & 1
=77 R

INTEGER

STEP ®
1(%“5 nomBER | FOR 4 NUMBER) = TIMES — 5

STEP NUMBER

AB
[o e =1 STEP e |
I sTEP HUMBER }-———-<:::::: Y} NumERAL

e B3 s e 50

L “§" WILL BE PRINTED AS *STEP"

80

3.2.3

REPEAT

DECLARATION

PROCEDURAL

SYSTEM

Repeat Statement

Examples: REPEAT STEP 30;
REPEAT STEP 5 THROUGH STEP 73

The REPEAT STATEMENT allows repetition of a single statement or a
group of statements. Any single Procedural Statement with a Statement
Number may be repeated. The statement.may be repeated as many times
as necessary as indicated by an unsigned Integer number. Any combin~
ation of Procedural Statements in a sequence may be repeated. The
only requirement is that the first and Tast statements of the sequence
must have Statement Numbers. The first Statement Number and the second
Statement Number in the REPEAT STATEMENT diagram must reference the
first and last statements of the repeat loop respectively. The first
and last statements form the boundaries of a repeat loop. Statements
within the repeat loop will be executed in the normal fashion. Bran-
ching may be used inside a repeat loop. If branching is used to
transfer control outside the repeat loop, the REPEAT STATEMENT will
lose control at this point and the effect of the repeat will be can-
celled. The next time the last statement in the repeat loop is exec-
uted, the original REPEAT STATEMENT will have no effect. A REPEAT
STATEMENT may be embedded in a repeat loop to form a nested repeat
]pop. The sequence of statements to be repeated can either precede
o} follow the REPEAT STATEMENT. A REPEAT STATEMENT cannot appear

81

REPEAT

within the bounds of the repeat grouping it initiates. Also, a RE-

PEAT STATEMENT cannot reference_itself.

Examples: REPEAT STEP 1000 THROUGH STEP 1100 FOR 20 TIMES;
VERIFY <::MAIN POWB2:> IS ON ELSE REPEAT STEP 540 THROUGH
STEP 550;

82

83 -

STop
STOP STATEMENT

MUST BE TAKEN - SYSTER MESSAGE

IF THE ABBREVIATED | AND UHRESTRICTED
DEFAULT OPTION RESTART

OF THE VERIFY ®

I pROCEDURAL | | PREFIX IS USED ! S

STATEMERT J
T ——— PREFIX 57
r STOP _l; L. PREFIX__ %) \ {
| STATEMERT _ I sTOP AND = INDICATE 1
4]

9 H
é] STEP mz KL) ®
1 (l- RESTART = LABELS ! wumBer b 0O

I ?

84 -

3.2.4

STOP

DECLARATION

- PROCEDURAL

SYSTEM

Stop Statement

Examples: STOP;
STOP AND INDICATE RESTART LABELS S100, S200;

The STOP STATEMENT provides manual intervention capability during
execution of a test program. The STOP STATEMENT has two primary op-
tions; the restricted and the unrestricted restart points of a test
program. The restricted mode allows the test program to be restarted
only at preselected points. The preselected points are determined by
the test engineer at coding time. During the execution of this state-
ment the program will stop execution after it has.displayed a tutorial
message to the test operator indicating the restricted mode and the
restart options that are available. The test operator then has the

option of selecting one restart point from the indicated restart points.

The unrestricted mode allows the test program to be restarted at any
Procedural Statement within the test procedure. With this option the
test writer does not control the restart point at coding time. Ex-
treme caution should be used when incorporating this option in a test
program. Arbitrary branching within a test program could have a serious

éffect on the system under test or the test program.

ﬁuring execution of this option an appropriate tutorial message will

be displayed to the test operator. The test program will stop execution,

85

STOP

except for concurrent type processing until the console operator takes

the appropriate action.

The STOP STATEMENT also allows the use of an abbreviated form when

combined with the Verify option of the Verify Prefix.
VERIFY <: MAIN PONER::> IS ON ELSE RECORD EXCEPTION AND STOP;

This statement invokes the default option for system messages and sys-
tem devices. The abbreviated form of the above example is VERIFY

< MAIN POWER > IS ON;

Before using this abbreviated version the user must be thoroughly fa-
miliar with the default condition and understand this is an unrestric-

ted STOP STATEMENT.

Examples: STOP AND INDICATE RESTART LABELS STEP 10, $20, STATEMENT
300;
VERTFY < POWER SELECTOR > IS ON ELSE DISPLAY EXCEPTION
T0<CRT 2 > AND STOP AND INDICATE RESTART LABELS S5,
S10;

86

87

TERMINATE
TERMINATE STATEMENT

RN GISTIO SR fRensm

PROCEDURAtm%

T .
STATEHENT SYSTEM
~ _T:;;;;: | L. TREFIX 573 |
! i TERMINATE ;

Ln STATEKENT 78“

D GENTE SNSRI SR

88

3.2.5

TERMINATE

DECLARATION

PROCEDURAL

SYSTEM

Terminate Statement

Examples: TERMINATE;
TERMINATE SYSTEM;

The TERMINATE STATEMENT causes cessation of execution of a program or
subroutine. There are two options: the Terminate and the Terminate
System. The Terminate option is discussed first. If a subroutine,
containing a Terminate option, is called into execution by a PERFORM
SUBROUTINE STATEMENT, when the Terminate option is executed it will
cause control to be returned to the calling program. Control will be

returned to the next sequential statement after the PERFORM SUBROUTINE

STATEMENT. If a subroutine is called into execution by an Interrupt

as defined by the WHEN INTERRUPT STATEMENT, the Terminate option will
cause control to be passed back to the calling program as directed by

the WHEN INTERRUPT STATEMENT.

A Terminate option within a program will, when executed, stop the ex-
ecution of the test program. If a program is called into execution by
a PERFORM PROGRAM STATEMENT, the Terminate option will stop execution

of the program and control will be returned to the program which called

it. Control is always returned to next sequential statement after the

PERFORM PROGRAM STATEMENT.

89

TERMINATE

In a concurrent program, the Terminate optfon will stop execution of
the program. Control is not passed back to the calling program but

is passed fo the system executive. In a cyclic execution mode of a
concurrent program the Terminate option will stop the execution of the
concurrent program. The concurrent program will be restarted at the

beginning of the next cycle. The calling program is executed

independent of the concurrent program and is not affected by the Ter-

minate option contained in the concurrent program.

The Terminate System option provides for a complete GOAL application
program system shutdown. If a subroutine is called into execution by
a PERFORM SUBROUTINE STATEMENT or an interrupt, a TERMINATE SYSTEM
STATEMENT will cause the execution of subroutine to terminate. The
calling program will also be terminated. If a TERMINATE SYSTEM STATE-
MENT is executed in a test program, called into execution by a PERFORM
PROGRAM STATEMENT, program execution will be stopped. Execution of

the calling program will also be stopped.

In a concurrent program the Terminate System option will stop execution
of it. In a cyclic concurrent program, the Términate System option
will, when exe;uted, stop the execution of the concurrent program.

The concurrent program will not be restarted at the beginning of the

next cycle.

90

3.3

ARITHMETIC/LOGICAL OPERATIONS
The Arithmetic and Logical Statements are those statements that pro-
vide the mathematical computation, and logical operations allowed in
the language. This group consists of the following statements:
ASSIGN STATEMENT
LET EQUAL STATEMENT

91

ASSIGH
WA ASSIGN STATEMENT
I PROCEDURAL |
STATEMENT
_____ PREFIX &7 e
-~ — [Lmn e -
ASSIGH y ASSIGH INTERNAL .
I statement _F - NAME
3 e e]
e e e g MUST BE DECLARED
INTERNAL 1 AS STATE VALUES
_ NAWE
= L 39
18—-/ EQUAL — TO °
ERETIN RN etk 9
STATE
b o e 12

" ¢

3.3.1

ASSIGN

DECLARATION

PROCEDURAL

SYSTEM

Assign Statement

Examples: ASSIGN (FLAG B) = ON;
ASSIGN (STAGE POWER) EQUAL TO (FLAG B);

The ASSIGN STATEMENT assigns a state to an Internal Name. .This is
available for setting "flags" which may be used for internal sequence
control within a test program. It may also be used to change any State
declaration for use in other GOAL statements. The ASSIGN STATEMENT

has two options: Internal Name and State. During the execution of

the State option the State specified on the right will replace the con-
dition of the Internal Name of the left. If the Internal Name option
is used instead of the State option, the state of the Internal Name

on the right side will replace the condition of the Internal Name on

the left side.

The Language Processor will ensure that any Internal Name used by an

ASSIGN STATEMENT has been declared as a State value.

Examples: VERIFY<::CLOCK:>> IS GREATER THAN -3 MINS 19 SEC THEN
ASSIGN (INTERNAL SEQ) EQUAL TO ON;
STEP 20 IF (A) = O, ASSIGN (FLAG A) = OFF;

NQB'

LET
42 \
@V LET EQUAL STATEHENT

f PROCEDURAL ¥
STATERENT
PREF IX
L’mwmmsj
] EQUAL - LeT—y WIERRAL @————-»()1
' STATEMENT a1 NAWE
Loanl=men] &) EXCLUDES STATE AND TEXT =—ef_ __ __ __ 33§
/ B \ e oere |
1&%— EQUAL T0 I ForwuLn bH—m—2

NUKERIC FORMULA

NUMERIC
[FORMULA

A
| ’ y AC
/
** r—GEe
{ } FORMULA §)
| I |
-
(-<E}——{;>—4 QUARTITY g)
R
==
—§ NumBER
. I |
g’ INTERﬂAL““B]

MUST BE DECLARED + HAKE
AS NUMERIG 0F QOANTITY L = — —— =4

I
I
I
i
[
!
‘/'\'

VA
7

L'-—-’m-m—m

94

3.3.2

LET

DECLARATION

PROCEDURAL

5@%

SYSTEM

Let Equal Statement

Examples: LET (A) = (A) + 1;
LET (B) = (A);

The LET EQUAL STATEMENT provides for the assignment of numerical values
to Internal Names through the use of the Numeric Formula. This state-
ment closely resembles conventional afithmetic formulas and is used

to perform necessary mathematical calculations. It should be noted
that all Internal Names or variables are delimited by parentheses.

The numeric calcualtion to be performed by a test program is defined
by the Numeric Formula. In the LET EQUAL STATEMENT the equal sign or
the words "EQUAL TO" means "is replaced by" rather than "is equivalent
to". During execution the results of the Numeric Formula replaces

the contents of thg Internal Name defined on the left side of the
equation. For example: LET (A) = (A) + 1; means that the Internal
Name (A) is to be replaced with the old value plus one. Quantities
may be mixed as desired. The hierarchy of operations is discussed in

the Numeric Formula writeup.

Examples: LET (SINX) = (XR) - ((XR) ** 3/6) + ((XR) ** 5/120) -
| ~ ((XR) ** 7/5040) ;
LET (X) = (((((B) ** 2) - (4 * (A} * (C)))** 0.5) - (B))
/2 * (A);

. .

3.4

EXECUTION CONTROL
The Execution Control Statements régu]ate the execution of a specified
component. This group of statements is necessary to control the mode
of-'execution of a program, subroutine, or monitor type statements.
The Execution Control group consists of the following statements:
CONCURRENT STATEMENT
RELEASE CONCURRENT.STATEMENT
PERFORM PROGRAM STATEMENT
PERFORM SUBROUTINE STATEMENT

96

97

CONCURRENT
CONCURRENT STATEMENT .

conws THR CReY TR -um-unmn
[y

r_l"ROCEDURAL -ME

STATEMENT EVERY—Q VE‘LMEE
TS i PREFIX 81
I concuRRENT mﬁ
U statement & CONCURRENTL‘{—()I
mmmmm 15§

PROGRA i
PERFORM —— PROGRAM 'ﬂ NARE : REX?E'?_N ;

DISPLAY "EXTERNAL EXTERNAL |
XTERNAL
1 PRINT ;PRESENT-"VALUE-OF-% D%srewﬁ'roa bT0 DEs;gﬁATQRﬂ%“T‘;
\. Recorp —/ b 23U ; L_............QJ/

DEFAULTS _j
TO SYSTEM DEVICE

m_—_j —m-_ TREZS CREPS BERES EURe
EXTERNAL COMPARISON OUTPUT o
VERIFY= pESigHATOR H TEST 5"‘ AND —1 excEPTION 53ﬁ'_9

98

3.4.1

CONCURRENT

DECLARATION

PROCEDURAL

SYSTEM

Concurrent Statement

Examples: CONCURRENTLY PERFORM PROGRAM (BEOT) REVISION 10;
CONCURRENTLY DISPLAY PRESENT VALUE OF'<:E1 MAIN FUEL

FLOW > T0 < CRT 15 > ;

CONCURRENTLY VERIFY<<:PRESS ENG 102 GIMBAL:>> IS BETWEEN
1665 PSIA AND 1465 PSIA AND DISPLAY EXCEPTIONS

TO<CRT 12> ;

The CONCURRENT STATEMENT allows parallel operations. This statemen

(9

has three main options: the Perform Program, Record, and Verify options.

The Perform Program option allows for concurrent execution of a test
program. A Time Value may be used to achieve a cyclic execution of a
concurrent program. If the specified time interval expires before
execution is finished, the concurrent program will continue normal ex-
ecution. The concurrent program will then be restarted immediately
after completion. If the execution of a concurrent program is com-
pleted before the time interval has expired, the restart of the con-
current program will be delayed until the time interval expires. The
concurrent program will be executed only once, if cyclic rate is not

specified.

A TERMINATE STATEMENT, within the concurrent program will stop the
execution of a concurrent program. It will not halt the cyclic

99

CONCURRENT

execution of the concurrent statement. The éyc]ic execution is stopped
by either a TERMINATE STATEMENT, Systeﬁ option in the concurrent test

program, or a Release Statement in the calling test program.

The Record option provides a data monitoring capability. A Time Value
may be used to specify the monitoring rate. The present value of the
first Function Designator will be recorded on the second Function Desig-
nator, computer periphera] equipment. If a group of test points {is
monitored they will be recorded on all indicated peripheral devices.

A reading from a test point may be recorded on any combination of

peripheral devices.

The Verify option provides an exception monitor capability. A Time
Value may be used to specify the monitor rate. The data is limit
checked every cycle but no action is taken unless the'data fails the
Comparison Test. An out of tolerance condition can force an error
message to be output to the test operator. Out of tolerance data may

be recorded on any available peripheral equipment.

Examples: IF (TIME) IS -3 MIN 31 SEC THEN EVERY 2 SEC CONCURRENTLY
PERFORM PROGRAM (NT60) REVISION 1;
EVERY 1 SEC CONCURRENTLY RECORD PRESENT VALUE OF < TEMP.
HE INLET VALVE> , < TEMP. GAS. HELIUM TANK > T0
<106 TAPE 25> < oRT 12> ,<RT 13> ;
STEP 20 EVERY 2 SEC CONCURRENTLY VERIFY < VOLT-OUTPUT
| AFT BATTERY NO 1> , < VOLT OUTPUT AFT BATTERY
NO 2 > , IS BETWEEN 61.0V and 51.0V AND RECORD
EXCEPTION (BATTERY VOLTAGE IS OUT OF TOLERANCE)

100

CONCURRENT

Examples: {CTD)

T0<LINE PRINTER 12> < CRT 13™> 3

101

- RELEASE
(63 RELEASE CONCURRENT STATEMENT

[proceouraL

STATERENT 9 G
e PREFIX 57 I
" rcre 1 e ———d - Lﬁ‘“"‘ -3
RE LEASE

CONCURRENT | NICER ®
S&TE%ENL& gm 7&5 9
£ MUST REFERENCE A
CONCURRENT STATEMENT
ALL

STEP NUMBER

' AB
ipv!s mmmmm uai STEP \ % rm T SR ST e ?
! STEP NUMBER p——(4 NUMERAL &—-—é—-

L _ & s —/ 5}

L “$'* WILL BE PRINTED AS “STEP"

102

3.4.2

RELEASE

DECLARATION

PROCEDURAL

SYSTEM

Release Concurrent Statement

Examples: RELEASE STEP 103
RELEASE ALL;

The RELEASE CONCURRENT STATEMENT releases from execution status the
parallel operations initiated by a CONCURRENT STATEMENT. The RELEASE
CONCURRENT STATEMENT will terminate the cyclic action of those CON-
CURRENT STATEMENTS which are referenced by a Statement Number. The
Language Processor will verify that the Statement Number used to
release a CONCURRENT STATEMENT references a CONCURRENT STATEMENT. The
ALL option allows for releasing of all CONCURRENT STATEMENTS activated
by the component in which the RELEASE CONCURRENT STATEMENT resides.
The RELEASE CONCURRENT STATEMENT can release only the concurrent oper-

ations started within the same component.

Examples: STEP 440 RELEASE STEP 10, STEP 20, STEP 16;
VERIFY < E1 RECIRC PUMP > IS OFF THEN RELEASE ALL;

103

PERFORM PROGRAM STATEMENT

F pROCEDURAL 1§

~4 STATEHENT
mmmmmm PREFIX &7
[~ “perrorm | L-—--m“--vﬂ\
| PeFO
Lﬂmmmwm?ﬂi&

CECR CRE YEE? DENES SR TERDR OO COUED GO

18____1 PROGRAﬁj ; Revision | °
g
NARE 58 \ L LABEL o ff 9

L.—-mmm O e T e el

REVISION LABEL
\Feve/

Y
Fe—————1 |
LETTER
I -1 I,]
f REVISION LABEL [REVISION ——
e e 58 ==
NUMERAL
s0f

S A

104

3.4.3

" PERFORM

DECLARAT 10N
PROCEDURAL |
SYSTEM

Perform Program Statement

Examples: PERFORM PROGRAM (LVDC POWER ON);
PERFORM PROGRAM (ATTITUDE COMMAND TEST) REVISION 03;

The PERFORM PROGRAM STATEMENT initiates execution of a specified pro-
gram. The execution of the calling test program stops when it starts
another program by the PERFORM PROGRAM STATEMENT. When a TERMINATE
STATEMENT or an END STATEMENT is encountered within the second Tevel
program, control is passed back to the calling program. Execution

of the calling program is then picked up at the next statement follo-
wing the PERFORM PROGRAM STATEMENT. Communication between different
levels of programs can be achieved by the use of a Function Designator

that is predefined as a system type.

The Language Processor cannot verify the existence or the uniquenéss

of the Program Name referenced in the PERFORM PROGRAM STATEMENT. The
executive must have access to the referenced program name at execution
time. During execution the Program Name is used to identify the other
program. The Revision Label may be used to select the proper configur-
ation level of a particular program. If used by the PERFORM PROGRAM
STATEMENT, the Revision Label in effect becomes part of the name the

executive uses in the retrieval operation.

105

!PERFORM

Examples: WHEN<C CLOCK > = -10 HRS THEN PERFORM PROGRAM (VM-GSE
PREPS);
STEP 252 AFTER< CLOCK > IS -3 MIN, VERIFY<C TERMINAL
SEQUENCE > IS ON THEN PERFORM PROGRAM (REDLINE
MONITOR) REVISION 020;

106

A 10’1‘

/50
NG,

| PERFORET SUBROUTINE
PERFORM SUBROUTINE STATEMENT .

rml"!’((}(.‘,E[)UR#?«Llumg
STATERERT
PREFIX

[Perrorm | ———
SUBROUTINE |
L _STATEMENT 56y

57} [‘ Q,RITICAL“\
PERFORN SUBROUTWE'——T?I

? F

|

: NUMBER
I)

e |

NUMBER
PATTERN

S
I
- QuanTiTY |
| LT
7
{ STATE |
e e o e

TEXT
TEXTY CONSTANT

L SOMTANT)
M

FUNCTION
DESIGNATOR 33

————

INTERNAL
39
r-SUBROUTlNE_! S o
1 NAME ¥
L 75 ?

108

3.4.4

PERFORM SUBROUTINE

DECLARATION

PROCEDURAL

SYSTEM

Perform Subroutine Statement

Examples: PERFORM CRITICAL SUBROUTINE (CALCULATE DELAY TIME);
PERFORM SUBROUTINE (TEST VOLTAGE);

‘The PERFORM SUBROUTINE STATEMENT initiates execution of a previously

defined subroutine. A subroutine may be performed in two modes, critical
and noncritical. The term critical indicates that the actions being
performed in the subroutine are time dependent and, as sdch,_shou]d not
be interrupted. It insures a basic amount of central processor time
for the execution of the subroutine. Language Level Interrupts are

not allowed to break into the execution of a critical subroutine.
Communication between the calling program and a subroutine may be
achieved by passing substitutable data at execution time. The sub-
stitutable data defined in the PERFORM SUBROUTINE STATEMENT will, at
execution time, replace the contents of the Parameters defined in the
BEGIN SUBROUTINE STATEMENT. The contents of the Parameters are avail-
able as both inputs and outputs of the subroutine. The number of
Parameters declared in the BEGIN SUBROUTINE STATEMENT must equal: the

number of substitutable data items. ‘

A1l names and Statement Numbers within the subroutine are local to the
subroutine. Therefore a Statement Number when used to referénce a

statement must reference a statement within the subroutine. A1l names

used within a subroutine must bé déclared in the subroutine. Subroutine
109

PERFORM SUBROUTINE

parameter passing is discussed in Section V.

Examples: VERIF’¥<LVDC> POWER IS ON THEN PERFORM CRITICAL
SUBROUTINE (LVDC SUMCHECK) T 7777777, T0000000;

AFTER < CLOCK > IS -22 MINS THEN IF (POWER TRANSFER
FLAG) IS ON THEN PERFORM SUBROUTINE (POWER TRANSFER)
24.0V, +0.5V,-0.5V,10SEC;

110

3.5

INTERRUPT CONTROL

The Interrupt Control Statements provide assignment of an interrupt
status. Interrupts, as defined in the test program, can only be honored
when they are in an active status. The following statements make up
the Interrupt Cohtro] group:

WHEN INTERRUPT STATEMENT

DISABLE INTERRUPT STATEMENT

m

WHEN INTERRUPT
WHEN INTERRUPT STATEMENT WH ERRUPT

I PrOCEDURAL U
STATEMENT
S PREFIX 57 S
R T runcrion 1
INTERRUPT WHEN-INTERRUPT DEsiGHATOR FOCCUR&T?I
L SITEENT w I
T srep "
1() 60— T0 i nwumeer _ o
1
T PERFORW e 0 .

STATEMENT
-

SUBROUTINE f= AND = RETURN TO i NUMBER ®
5 ‘i\\ B

PROCEDURAL STATEMENT PREFIX

AND STATEMENT TERMINATOR INVALID CONTROL RETURNED TO THE

POINT OF INTERRUPTION

n_z"

3.5.1

WHEN INTERRUPT

DECLARATION

PROCEDURAL

SYSTEM

When Interrupt Statement

Examples: WHEN INTERRQPT<::POWER FAILURE::> OCCURS GO TO STEP 9000;
WHEN INTERR§9T<MAIN POWER> OCCURS GO TO STEP 333;

The WHEN INTERRUPT STATEMENT enables a Language Level Interrupt. The

Function Designator identified as an interrupt, by this statement,

must also be spgcified in the Data Bank as an interrupt. The conditions

necessary for the occuhyence of the interrupt are also defined within
the Data Bank. The WHgN INTERRUPT STATEMENT has two options: %he
Perform Subroutine and“the Go To. During the execution of this state-
ment the specified interrupt is activated, but the referenced subrou-
tine or Go To option is not executed, at this poinf. After execution

of this statement, the remaining Procedural Statements are executed in

their normal sequence.

The Go To option is discussed first. If the interrupt conditions are
met, the normal execufion of the test program is stopped. Control

is then passed to the statement identified in the Go To option of the
WHEN INTERRUPT STATEMENT. The test program continues normal execution
from that point. If the Perform Subroutine option was selected and
ﬁhe interrupt conditions are met, the normal execution of the test
program is stopped. Coﬁtro] is passed to the indicated subroutine.

if a TERMINATE STATEMENT is then encountered, control will be returned

to the test program as directed by the WHEN INTERRUPT STATEMENT. If
N3 '

WHEN INTERRUPT

the statement does not specify a Statement Number it will be returned

to the calling program at the point it left to process the interrupt.

If a TERMINATE STATEMENT is not encountered, execution of the subroutine
control will be returned as indicated by the WHEN INTERRUPT STATEMENT.

Examples: IF (SUBROUTINE A FLAG) IS ON THEN WHEN INTERRUPT< HY DR
PUMP PRESS > OCCURS PERFORM SUBROUTINE (PUMP CHECKS)
20 PSIA, ON, OFF AND RETURN;
WHEN INTERRUPT<C CLOCK T-22 MINS 3> OCCURS PERFORM SUBROUTINE
(START TANK CHILLDOWN) AND RETURN TO STEP 9999;

114

115

DISABLE INTERRUPT STATEMENT

DISABLE

¥ ProcEDURAL 1

STATEMENT

mmmmmm PREFIX 5
DISABLE 1
INTERRUPT
STATENERT 285

STEP NUMBER

NTERRUPT STATEMENT

S STEP
DISABLE HUMBER
MUST REFERENCE WHEN

"S" WILL BE PRINTED AS *STEP™

— 16"

IAB

o STEP'—-—-\ % e =g
STEP NUWMBER p-—-—<t::::: 4 NUMERAL &————<§~—~
L _____ Ll_“ml_so

8 e

3.5.2

" DISABLE

DECLARATION

PROCEDURAL

s
£

SYSTEM

Disable Interrupt'Stétement

Examples: DISABLE STEP 20;
DISABLE ALL;

The DISABLE INTERRUPT STATEMENT disables the interrupt enabled by the

‘referenced WHEN INTERRUPT STATEMENT. Thus, this statement is the com-

plement of the WHEN INTERRUPT STATEMENT. The Language Processor will
verify that the Statement Number references a WHEN INTERRUPT STATEMENT.
The execution of a DISABLE INTERRUPT STATEMENT will result in a no
operation if the referenced WHEN INTERRUPT STATEMENT has not been
previously executed. A no operation will not stop the execution of
the test program; it will continue in its normal sequence. The ALL
option will disable all active WHEN INTERRUPT STATEMENTS used by the
component in which the DISABLE INTERRUPT STATEMENT is found.

A1l interrupts are disabled at the start of a program and remain dis-
abled until activated by the WHEN INTERRUPT STATEMENT. The active or
disable status is valid only for the component in which it is defined.
The active or disable status, of a test program that calls into execu-
tion a second program, is not valid for the second program. Interrupts
activated in the second program are active only for that program.

When the second program passes control back to the calling program, the
original status of the interrupts are reinstated. Interrupts énab]ed

by a program are suspended during execution of a subroutine. Language
117

DISABLE

Level Interrupts are discussed in Section V.

Examples: DISABLE STEP 333;
VERIFY<MAIN POWER > IS OFF THEN DISABLE STEP 55, STEP 70;

118

3.6

TABLE CONTROL
The Table Control Statements assign an active or inactive status to
individual rows of a specified table. The following statements make
up the Table Control Statements:

ACTIVATE TABLE STATEMENT

INHIBIT TABLE STATEMENT

19

- ACTIVATE
. ACTIVATE TABLE STATEMENT

{ ProcenuraL
STATEMERT o
M herivare . 1] et I asie
| TABLE H - ACTIVATE ~—f yauwr g-—-—ex
| STATEMERT 1} 7
1) - ' e &
C _ l 9
k4 b Lactivate
- ALL ROWS
INDEX
RAME ;
'+ INTEGER
ROW ~ i KUMBER
L -3
E ROW
¢ DESIGNATOR
mm—vm?-sx
W ROW DESIGHATOR
o—— gy
3 ~ l opesiguaror

MUST BE UNIQUELY DEFIRED IN
TABLE DECLARATION STATEWENRT

120

ACTIVATE

DECLARATION

PROCEDURAL
SYSTEM

3.6.1 Activate Table Statement

Examples: ACTIVATE (DISCRETE TABLE);
ACTIVATE (TABLE A) ROW 1,.R0w 2, ROW 3;

The ACTIVATE TABLE STATEMENT assigns an active status to a table or in-
dividual rows of a table. The ACTIVATE TABLE STATEMENT deafs only with
the Function Designators and not the data positions. System under test
access via a table can only be performed on active Function Designators.
A1l rows of a table are initially activated at program start. If an
operation is to be performed on multiple rows, the operation will only
be performed on the active rows. The system executive takes into
account the status of each row, during table operations, to determine
if any action is required. Operations involving only the data loca-
tions of a table are not affected by an inactive status. The Language
Processor will verify that the Table Name and the Index Name referenced
in an ACTIVATE TABLE STATEMENT are properly defined by a Declaration
Statement. A Row Designator is a Function Designator used to reference

a particular row and therefore is not declared.

An “"ALL" option is provided for activating all rows within a specified

table. 1If a particular row is not referenced the ALL option is assumed.

a2

ACTIVATE

Examples: ACTIVATE (MESSAGE TABLE) ROW (INDEX);
ACTIVATE (POWER ON TABLE)
< POWER SUPPLY NO 1 > ,
< POWER SUPPLY NO 2 > ,
< MAIN POWER > ;

ACTIVATE (TABLE A) ROW 1, ROW 2, ROW 33

122

123

737\
G,

INHIBIT TABLE STATEMENT

{TPrROCEDURAL 1

STATEHMENT ’

TABLE b
s
| _STATEMENT g

B AT DA DTN TR

IKHIBIT ~i TABLE HARE E’“{l
| m

b
¢

IKHIBITS ALL ROWS 7 9

9]
e

IHDEX HAME
b e
i “Wwrecer ¥
§ wumBER

ROW

¥

3 9

(50

ROW DESIGNATOR

r-———"71

™ Taow
{ DESIGNATOR

|

FURCTION

{ ROWDESIGNATOR

{ DES!GNATOR#Q—_""“”"

. MUST BE UNIQUELY DEFINED I
TABLE DECLARATION STATEMERT

124

INHIBIT

DECLARATION
PROCEDURAL

SYSTEM

3.6.2 Inhibit Table Statement

Examples: INHIBIT (DISCRETE TABLE):
INHIBIT (DISCRETE TABLE) ROW 1;

The INHIBIT TABLE STATEMENT assigns a deactive status to a table or in-
‘dividual rows of a table. The INHIBIT TABLE STATEMENT deals only with
Function Designators and not with data positions. System under test
access via a table cannot be performed on inhibited Function Designa-
tors. If an operation is to be performed on a specific row that is
inhibited, the operation will not be executed. No error message will
occur and the program will then continue normal execution. The Lan-
guage Processor will verify that the Table Name and Index Names used

in an INHIBIT TABLE STATEMENT are properly defined by a Declaration

Statement. An Index Name must be declared as an Integer number. -

An ALL option is provided for inhibiting all rows within a specified
table. The ALL option is invoked if only a Table Name 1s used.
Examples: INHIBIT (TABLE A) ROW (INDEX NO 1), ROW (INDEX NO 2),
- |
. ROW (INDEX NO 3); ‘
INHIBIT (MAIN POWER),<::MAIN POWER::> ,<::MAIN POWER::> 3

INHIBIT (TABLE A) ROW 1, ROW 2, ROW 3;

125

S [T CWATS USRS, GRS CUNED SSTD st SIS e SR e SRe.

B ST DIED AT CEXRD GIWD KA LD DT DU SN SR SN0 (T S

BEGIN PROGRAM STATEMENT - _;

e i s s v e i e s SR s sy St S)

LA EXPAND MACRO STATEMENT |}
\ O O T— |

_REPLACE STATEMENT

{ FREE DATA BANK STATEMENT I

126

4.0

4.1

SECTION IV, SYSTEM STATEMENTS

GENERAL
System Statements primarily direct the Language Processor. The System
Statements are subdivided into three groups: Boundary Statements,

System Directives Statements, and Special Aids Statements.

BOUNDARY STATEMENTS
Boundary Statements delimit a GOAL component. The following statements
make up the group of boundary statements:

BEGIN DATA BANK STATEMENT

BEGIN MACRO STATEMENT

BEGIN PROGRAM STATEMENT

BEGIN SUBROUTINE STATEMENT

END STATEMENTH

LEAVE STATEMENT

RESUME STATEMENT

127

BEGIN DATA BANK STATEMENT BEGIN DATA BANK

STATEMENT ~ §——— BEGIN —— DATA —— BANK —f NAME s__c)l
5 . .

S — L[_.._...JZJ

DEFINES DATA

{ BEGIN DATA BANK 1 r B

BANK NAME
Ll il |
) i l °
1 REVISION LABEL
(¥_,.,,..._J:ig 9
REVISION LABEL
- Y
===
LETTER
I I,
| REVISION LABEL f————— REVISION
NUMERAL
e 50!

128

4.1

.

BEGIN DATA BANK

DECLARATION

PROCEDURAL

SYSTEM

Begin Data Bank Statement

Examples: BEGIN DATA BANK (S2 DATA BANK) REVISION 0;
BEGIN DATA BANK (IU GUIDANCE AND CONTROL) REVISION 1;

The BEGIN DATA BANK STATEMENT inidcates the start of a Data Bank. This
statement is a Language Processor directive that allows a test writer

to create an arbitrary name for the identification of a Data Bank. This
statement must be the first statement in a Data Bank, and may be used
only once in a Data Bank. A Revision Label is required in this state-

ment for proper identification of an individual Data Bank.

Examples: BEGIN DATA BANK (SIC PRESSURE DATA BANK) REVISION 2;
BEGIN DATA BANK (CM DATA BANK) REVISION 103

129

GE}

BEGIN PROGRAM STATEMENT

[~ " &ean 1
& PROGRAN B BEGIN

¢
STATEMENT R

| A i p .

——
1()‘ Ji NANE
| /) |

7
L DEFINES P

REVISION LABEL

T
[REVISION LABEL f—————— REVISION

| S

130

BEGIN PROGRAR

PROGRAM -1
r EEERE BEUKNY LNDGyy otTowey W
REVISION LABEL o
R 1] ?
ROGRAM NAME
TR RLNSY A Y
r- [~ - .W
LETTER
L 8]
—_——q
NUMERAL i

4.1

2

BEGIN PROGRAM

DECLARATION

PROCEDURAL

SYSTEM

Begin Program Statement

Examples: BEGIN PROGRAM (LV TM CAL) REVISION 0;
BEGIN PROGRAM (CDC SEQ) REVISION O COMP 2;

The BEGIN PROGRAM STATEMENT indicates the start of a test program to
the Language Processor. This statement allows a test writer to create
an arbitrary name for the identification of a test program. This
statement must be the first statement in a test program, and may be
used only once in a test program. A Revision Label is required in

this statement for proper identification of an individual test program.

Examples: BEGIN PROGRAM (PREFLT CAL) REVISION 3;
BEGIN PROGRAM (POWER TRANSFER) REVISION A;

131

BEGIN SUBROUTIKE

BEGIN SUBROUTINE STATEMENT

REV 0
R 1 7
| BEC SUDROSTIHE b BEGIN SUBROUTINE —} NAME g————()x
e e 3 b e e e 211

DEFIRES SUBROUTINE NAME

9 K
; "7
| PARAMETER }
L TRRTR OISR TR mm

$ e

W‘ PARAKETER —————
‘ rDEUNCTION 5
e -1 /""""‘L SlGHATOR:&!

| PARAMETER. } ———
e 54§ \ r 1
HARE @;

(. i

132

4.1.3

BEGIN SUBROUTINE

DECLARATION

PROCEDURAL

SYSTEM

Begin Subroutine Statement

Examples: BEGIN SUBROUTINE (POWER ON);
" BEGIN SUBROUTINE (FORCE TERM) (PARAMETER 1);

The BEGIN SUBROUTINE STATEMENT indicates the start of a subroutine.
This statement is a Language Processor directive that allows a test
writer to create an arbitrary name for the identification of a subrou-
tine. This statement must be the first statement in a subroutine, and
may only be used only once in a subroutine. A subroutine may be con-
tained in either a program or data bank. A subroutine may be inserted
between any two statements; but for convention, subroutines should be
grouped together and inserted after the Declaration Statements. Sub-

routines also may be compiled as an entry by the Language Processor.

Optional Parameters may be defined with a BEGIN SUBROUTINE STATEMENT.

Parameters allow the passing of data from a test program to a subrou-

tine or from a subroutine to a test program. The number of parameters

in the BEGIN SUBROUTINE STATEMENT must equal the number of parameters
passed by the PERFORM SUBROUTINE STATEMENT.

Examples: BEGIN SUBROUTINE (CALCULATE SIN), (DEGREE);
BEGIN SUBROUTINE (POWER OFF), (GUIDANCE), (CONTROL);

133

BEGIN HACRO

s
% BEGIN MACRO STATEMENT

S ucrs | A
{ sTaTeEmEnT BEGIN == MACRO ——f MACRO LABEL é-~————_m1?1
!_. mmmmm mﬂ &mmm—-mﬁ
9 J
"""
-{ PARAMETER }
L’mmmm
1A= o
(9
“rivo) MACRO LABEL
, LETTER
E——— I i R
| MACROLABEL §———+4 LETTER } O
I,] . "““'"""1
KUMERAL
L-————m—SOJ

134

4.1.4

BEGIN MACRO

DECLARATION

PROCEDURAL

SYSTEM

Begih Macro Statement

Examples: BEGIN MACRO S2 POWER;
BEGIN MACRO A2 (PARAMETER 1);

The BEGIN MACRO STATEMENT indicates the start of a Macro. This state-

‘ment is a Language Processor directive that allows a test writer to

create an arbitrary but unique label for the identification of a Macro.
This statement must be the first statement in a Macro and may be used
only once in a Macro. A Macre may be contained within either a Program
Data Bank or Subroutine. By convention, Macros should be grouped to-
gether and inserted immediately following the BEGIN PROGRAM STATEMENT

of the host component.

Optional Parameters may also be defined with a BEGIN MACRO STATEMENT.
These Parameters are used to indicate substitutable arguments within
a Macro skeleton. The substitutable arguments are replaced by the
corresponding Character Strings defined in the EXPAND MACRO STATEMENT.

This replacement is done during program completion by the Language

Processor. For more information on Macros refer to Section V.

Examples: BEGIN MACRO ADJUST (FUNCTION DESIGNATOR), (VOLTAGE ADJUST),
(STEP);
BEGIN MACRO CALCULATE SINX (RADIAN);

135

7
| END STATEMENT }——— END
R

136

DATA=- BAHK
PROGRAM
MACRO

SUBROUTINE

4.1

.5

END

DECLARATION

PROCEDURAL

SYSTEM

End Statement

Examples: END DATA BANK;
END PROGRAM;

The END STATEMENT indicates the end of a referenced component. The
END STATEMENT has four options: Data Bank, Program, Macro, and Sub-
routine. The Language Processor will verify that the referenced pack-
age is consistent with the package in which the END STATEMENT is con-

tained.

The END SUBROUTINE option, when encountered during execution, will

cause control to be returned to the calling program.

The END PROGRAM option indicates that the execution of a test program
is complete. It also indicates to the Language Processor the end of

a program compilation.

The END DATA BANK, and END MACRO options serve only as an indicator to
the Language Processor. If the statement preceding the END STATEMENT

is not a TERMINATE STATEMENT, then the END STATEMENT also defaults to

produce the effect of a TERMINATE STATEMENT.

Examples: END MACRO;
END SUBROUTINE;

137

NG

LEAVE

LEAVE

9
A

HUMBER

L"“"---.,,égg""V

e — “?
PATTERN |

L ATTERK

——

QUANTITY

= Texr
TEXTd COMSTANT
p SonsTANT 8

- INTERKAL -1

|

o

138

v e

4.1.6

LEAVE

DECLARATION

PROCEDURAL

SYSTEM

lLeave Statement

Examples: LEAVE;
LEAVE 10,10,20;

The LEAVE STATEMENT is a Language Processor directive providing a
method for leaving GOAL during processing of a Data Bank Subroutine
and enabling the execution of a subroutine written in another language.
It also enables the passing of data to the other language subroutine.
The other Tanguage must be compatible with the GOAL programming system
before its subroutine capabilities can be used. The LEAVE STATEMENT

is a legal statement only in a Data Bank Subroutine.

To use a subroutine written in another language the subroutine must
first be compiled by the other Tanguage compiler. The explicit error
free object subroutine is then inserted within the Data Bank Subrou-

tine.

The LEAVE STATEMENT must immediately precede the other language sub-
routine. The LEAVE and RESUME statements mark the beginning and ending,
respectively, of the other language subroutine. The PERFORM SUBROU-
TINE STATEMENT 1is used to execute a subroutine containing a NON-GOAL
component. The Subroutine Name used by the PERFORM SUBROUTINE STATE-
MENT references a Data Bank Subroutine that contains the NON-GOAL com-
ponent which is to be executed.

139

LEAVE

Examples: LEAVE TEXT (DATE 10/28/72), 14;60 PSIA, 14.65 PISA, 28 MPH;
LEAVE (VARIABLE DATA), ON, OFF, X10AB, X10AC;

140

41

e/

RESUME STATEMENT

r—mmmmm
i RESUHE m‘;

STATERENT ¥
L TR CIURIE UERRET WA Ry m

RESUME

142

RESUME

DECLARATION
PROCEDURAL
SYSTEM

4,17.7 Resume Statement

Example: RESUME;

The RESUME STATEMENT is a Language Processor directive. It provides a
method of resuming the compilation of a GOAL subroutine. It also
enables a return to the host Data Bank Subroutine after the execution
of a NON-GOAL subroutine. The RESUME:STATEMENT must immediately follow
the NON-GOAL component. A GOAL statement must follow the RESUME STATE-
MENT.

143 -

4.2

SYSTEM DIRECTIVES ‘
The System Directive Statements relate a test program to a specified .
Data Bank. The USE DATA BANK STATEMENT and FREE DATA BANK STATEMENT
are directives to the Language Processor. Thé SPECIFY STATEMENT is
used in creating a Data Bank. It relates a Function Designator to a
test point. The System Directive Statements are:

USE DATA BANK STATEMENT

FREE DATA BANK STATEMENT

SPECIFY STATEMENT

144

W USE DATA BANK STATEMENT

; @ L
o B gﬂ DATA BANK m? REVISION _TL ©

i DATA BARK USE
STATEMENT . ! NARE LEVEL g 1 9

REVISION FABEL

Y
S
LETTER
T | .]|
B REVISION LABEL f————— REVISION e
R, |1 R
KUMERAL
50l

L-m--—mma

146

4.2.1

USE

DECLARATION

PROCEDURAL

SYSTEM

Use Data Bank Statement

Examples: USE (S2 DATA BANK), (SIC DATA BANK), (SIVB DATA BANK),
(IU DATA BANK);

The USE DATA BANK STATEMENT is a Language Processor directive used to

identify a unique Data Bank for compilation of a test program or part

of a test program. This statement allows the Language Processor to
have access to a referenced Data Bank. More than one Data Bank may
be active at a time. However, an increase in the number of active
Data Banks may result in an increase in time required for compilation.
The activation of an additional Data Bank will not effect the status

of Data Banks that have been previously activated.

The Revision Label is optional, and if not used, the first Data Bank
located by the system that contains a matching name will be used re-

gardless of its-Revision Label.

The Language Processor will flag an error condition if a name is used
to reference a nonexisting Data Bank or a Data Bank that has not been

{

processed.

147

, FREE DATA BANK STATEMENT

\eevt/

f 9 | L
g_.FREE DATA BM;K_-g FREE éré DATA BANK i r REVISION i ®
STATEMENT I NAME LABEL ¢
L—- mmmmm ﬂ m-m-m_—lj:ﬁ ~n=-n——-u-6§J '
REVISION LABEL
Y
FTTTTM]
LETTER
=== LT
§ REVISION LABEL j————— REVISION » o
HUMERAL
508

T s e meee el

148

4.2.2

FREE

DECLARATION

PROCEDURAL

SYSTEM

Free Data Bank Statement

Examples: FREE (SIC DATA BANK);
FREE (IU DATA BANK) REVISION 2;

The FREE DATA BANK STATEMENT is a Language Processor directive. It

“inhibits the Language Processor from accessing a previously activated

Data Bank. To release a Data Bank it must have been previously acti-
vated by a USE DATA BANK STATEMENT. Any attempt to free a non-active

Data Bank will result in a processor error.

The Revision Label is optional and may be used to specify a specific
update level of a Data Bank. If two Data Banks have the same name but
different Revision Labels, and the Revision Label is not specified in
a FREE DATA BANK STATEMENT, the first Data Bank found by the Language

Processor will be released.

Examples: FREE (SIC DATA BANK), (S2 DATA BANK);
FREE (S2 MEC DATA BANK) REVISION 1, (S2 ELEC DATA BANK)
REVISION 2, (IU ELEC DATA BANK);

149

SPECIFY STATEMENT SPECIH
& -z

, ALSO — AS—4 CORSTANT
U " speciey ™ Fukction)
| STATEWERT |f-sPEciFy-l DESIGHATOR |- 1
DEFINES FUNCTION e
DESIGNATOR i “womser ™}

9——{ PATTERN p—3g9
TYPE e =2
LOAD = ieT
- CONSTAHT
I ||
1(1-:\3 SENSOR j _ 2

INTERNAL NAME, PROCEDURAL STATEMENT
PREFIX AND FUNCTION DESIGRATOR IRVALID

SYSTEM

I ™ perrorm __g
—- USING ——f SUBROUTIHE |
I STATEMENT 55y \
p] { b}
L
(N
7 I “wumeer 1
LETTER 9—f PATTERN |.q
*‘ TR GRS SRS IR
TEXT
I consTANT
L—_——Ej
3)‘ °
(
9

150 -

SPECIFY

PR ‘
EKHﬂDINH}.PAi}E BLANK NOT FILMED

point for concurrent testing. Synchronization points in two or more
concurrently executing programs can cause the tests to be synchronized
at that point. The Language Processor will verify the relationship
between a Function Designator and the statement in which it is used;
For example, a Function Designator declared as a Load and used in a
READ STATEMENT is considered illegal. The three main forms of Function
Designators may be subdivided, if necessary, as to the type of Function

Designator.

An optional subreutine that provides the necessary code conversation
is specified for any inputs or outputs. The Tlast optional branch
started with an asterisk symbol is used to further define a Function
Designator. For example in the case of telemetry, the channel address

may be defined.

Examples: SPECIFY<COTBD CTS > ALSO AS (OUTBOARD CUTOFF SIGNAL)
SENSOR TYPE (DDAS) * ADDRESS (AP1A0-14-00-00);
SPECIFY < CDF > ALSO AS (COUNTDOWN FLAG) SYSTEM TYPE

- {STATE) * (ON);

152

4.3

SPECIAL AID STATEMENTS

The Special Aid Statements.ease the burden on the test writeér and
reviewer. These statements are Language Processor directives and

are not executable. The REPLACE STATEMENT and EXPAND MACRO STATEMENT
are used for substituting source code during processing. The COMMENT
STATEMENT may contain any commentary desired by the test writer. The
contents of the statement are printed but are otherwise ignored by

the Language Processor.

The Special Aid Statements are:
COMMENT STATEMENT
EXPAND MACRO STATEMENT
REPLACE STATEMENT

153

/13

W COMMENT STATEMENT

r COMMENT """g $ ' ngHARACTER "”g o
STATEMENT STRING

“C
$ AND o SYMBOLS NOT ALLOWED

CHARACTER STRING

. 2
By Tawien D U
STRING

P Y | I

154

COMMENT

DECLARATION
PROCEDURAL
SYSTEM

4.3.1 Comment Statement

" Examples: $ POWER TRANSFER SWITCH VERIFICATION;
$ SCAN ERROR ROUTINE;
$ 15;

A1l comments must begin with a currency symbol and terminate with a
semicolon. Comments may be inserted at any point in a program except
where specifically prohibited by syntax notes. Comments primarily
benefit the program reviewers and have no effect on the execution of
the program. They will be printed with the compile 1istings but will
be otherwise ignored. Currency symbols and semicolons are not allowed

in the body of the comment.

155

EXPAND
.,) EXPAND MACRO STATEMENT ,

EXPAND ~—
EXPAND MACRO / \ \)
E STATEMENT 30§ EXECUTE 1

e e s s e e
e
9 g CHARACTER

A STRING IJ,E 9 .
————— === =X COMMAS IRVALID
r BLANKS ARE SIGHIFICANT

MACRO LABEL

REV 0
o W
LETTER
r———=—7 - L &
| MACRO LABEL J—1 R A
| .1 | ..] | r""""""""——l_/
NUMERAL
L-—-—--—--—.zgj

1'56 g

4.3.2

EXPAND

DECLARATION

PROCEDURAL

SYSTEM

Expand Macro Statement

Examples: EXPAND MACRO CALCULATE SINX, (X),;
EXECUTE MACRO ADJUST, <C AC SIGNAL > , (0.5V), S340,;
EXPAND AND EXECUTE MACRO REMOVE POWER, (CAL TABLE), 3,;

The EXPAND MACRO STATEMENT causes the Macro skeleton, a predefined
sequence of source code, to be inserted by the Language Processor into
the source program at the point occupied by the EXPAND MACRO STATE-
MENT. Once a Macro is defined it may be expanded at all component
levels. The EXPAND MACRO STATEMENT provides a means for the substi-
tution of parameters, as defined by the BEGIN MACRO STATEMENT; into

the source code created by the test writer.

The EXPAND MACRO STATEMENT has three primary options that control only
the printing of the Macro skeleton. The three options are the EXPAND,
EXECUTE, and the EXPAND AND EXECUTE options. An example of a Macro
might be:

BEGIN MACRO ADJUST (UNIT), (INCREMENT), (STEP 2);

LET (VOLTS) = (0.5V);

(STEP 2) APPLY (VOLTS) TO (UNIT);

LET (VOLTS) = (VOLTS) + (INCREMENT);

157

EXPAND

DELAY 2 SECS;
VERIFY (UNIT) IS LESS THAN 28V THEN éO TO (STEP 2);
END MACRO;

The above sequence of source codes, statements, is defined as the

Macro skeleton.

The EXPAND option inhibits the printing of the EXPAND MACRO STATEMENT,
and allows for the printing of the Macro skeleton after the Parameters
have been substituted. Using the previously defined Macro, an example
of the EXPAND option might be:

EXPAND MACRO ADJUST, <CAC SIGNAL > , (0.2V), S495,;
This statement would result in the following printout:

LET (VOLTS) = (0.5V);

STEP 485 APPLY (VOLTS} TO<::AC SIGNAL::> H

LET (VOLTS) = (VOLTS) + (0.2V);

DELAY 2 SECS;

VERIFY <AC SIGNAL > IS LESS THAN 28V THEN GO TO STEP 495;
The EXECUTE option allows for a partial printing of the EXPAND MACRO
STATEMENT. This option inhibits the printing of the Macro skeleton
with the substituted Character Strings. Using the above defined M&cro,
an example of the EXECUTE option might be:

EXECUTE MACRO ADJUST,<::AC SIGNAL::> » (0.1V), S540,;
This statement would result in the following statement to be printed:

ADJUST, < AC SIGNAL > , (0.1V), S$450,;

158

EXPAND

The Macro-generated statements are inserted but are not printed in

this option.

The EXPAND AND EXECUTE option is a combination of the two other options.
For example, given the EXPAND MACRO STATEMENT:

EXPAND AND EXECUTE MACRO ADJUST, < AC SIGNAL > » (0.3V), S540,;
would result in the following statements to be printed in a source
listing:

ADJUST < AC SIGNAL > , (0.3V), $540,;

LET (VOLTS) = (0.5V);

STEP 540 APPLY (VOLTS) TO<AC SIGNAL > ;

LET (VOLTS) = (VOLTS) + (0.3V);

DELAY 2 SECS;

VERIFY<AC SIGNAL> IS LESS THAN 28V THEN GO TO STEP 540;

Examples: EXPAND MACRO APPLY S 2 POWER;
EXECUTE MACRO CALCULATE SINX, 3 VOLTS,;
EXPAND AND EXECUTE MACRO X,<SWITCH 3 > » AND SAVE AS,;

159

~ REPLACE STATEMENT
REV D

r REPLACE

REPLACE

B
STATERENT g
~)

RO GeTdR CEVGN | CN

(] CHARACTER

MUST ROT TERMINATE

REPLACE () 1
$ SYMBOL KOT ALLOWED,

INA $ SYMBOL ; % BLAKKS ARE SIGNIFICANT

1 B
b~) —wth-$$4
11 L

CHARACTER | $$

L _uj SO
"1 F==="
1 NAME | WITH I name | o
1) b ?
F euncrion | WITH 5 FUNCTION
DESIGNATOR ¥ 1 DESIGHATOR
\Reve) e — T
B 1

R 1 "7

| NAME - (—4

e Q. -1

LETTER
L 2
LETTER

. 160

— I-
\—I NUHERAL --%_/

| IR— T

4.3.3

REPLACE

DECLARATION

PROCEDURAL

SYSTEM

Replace Statement

Examples: REPLACE < POWER SUPPLY NO 1 > WITH < POWER SUPPLY NO 2 > ;
REPLACE (DISCRETE TABLE) WITH (DISCRETE TABLE LDI);

The REPLACE STATEMENT is a Language Processor directive. It provides

a means for substituting source code dqring processing. This capability
allows a convenient means for updating Function Desgignators and Internal
Names. It may also be used as a form of shorthand to ease the burden
for a test writer. The source code on the right side of a REPLACE
STATEMENT will be substituted for the source code identified by the

left side of the statement. The Langgage Processor will compare all
names and Function Designators, within a test proceﬂure, to the source
code identified on the left side of a REPLACE STATEMENT. If a compar-
ison is made, the source code on the right side of the REPLACE STATE-
MENT will replace the old source code within the procedure. Once a
REPLACE STATEMENT is defined it may be used to substitute at all com-
ponent levels. A test program listing generated by the Language

Processor will reflect any substitution caused by a REPLACE STATEMENT.

The double currency symbols used when replacing a Character String
are dropped off by the Language Processor, and only the source code -
between the double currency symbols is substituted. The parenthesis

and angle brackets are substituted.

161

REPLACE

Examples: REPLACE (A) WITH $$AND SAVE AS$$
REPLACE (B) WITH $$AND SAVE AS (RESERVE)$$:

162

5.0

5.1

SYSTEM V, SYSTEM CONCEPTS
GENERAL
This section discusses some of the general concepts used in developing
the GOAL programming system. The system is divided into three main
areas: (1) the language, (2) the Language Processor and (3) the System

Executive.

The GOAL Language consists of five components which are defined as:

(1) Program, (2) Data Bank, (3) Subroutine, (4) Macro, and (5) Non-GOAL.
Certain combinations and constraints of these components are discussed
in this section along with various interactions between individual com-

ponents.

Components are a necessary ingredient in any programming system, but
they do not make up a complete system. These components need support;
this type of support comes in the form of a processor and an executive.

A GOAL processor and executive are also discussed in this section.

Finally, this section discusses some general programming concepts in
the following areas: concurrency, tables, interrupts, terminations,

and dimensions.

ALLOWABLE STRUCTURES

When visualizing automatic processing of procedures, several distinct
components of the system emerge. GOAL was designed to be compatible
with the following language system concepts. "Test functions" will
be contained primarily in the "program" and "subroutine" components
and since GOAL was developed for “test functions," GOAL appears most

natural in those components.

163

The two primary (stand-alone) components are:

1. Program

2. Data Bank

The three secondary components are:
1. Subroutine
2. Macro

3. Non-GOAL

A Subroutine must be contained either within a Program or Data Bank.
Subroutines in a Program should, by convention, be grouped together
and inserted following the Declaration Statements, if any, and prior
to the Procedural Statements. However, Subroutines may be inserted

between any two statements of a Program or Data Bank.

A Macro may be contained within either a Program, Data Bank, or a
Subroutine. Macro's must be defined prior to the statement that uses
(egpands) it. By convention, Macros should be grouped together and
inserted immediately following the Begin Statement of the host com-
ponent. Once inserted, the Macro may be expanded at all component

levels (i.e., global).

A Non-GOAL component must be contained within a Subroutine and that
Subroutine must be within a Data Bank. Non-GOAL components may be

inserted at any point within a Data Bank Subroutine provided it does
not divide or break a statement. This allows a Data Bank Subroutine

to consist solely of a Non-GOAL component if so desired.

164

165

e o |

PROGRAM iBEGmPRq_GRAmﬂ)1
DEFINITION STATEMENT ¥ (
DECLARATION
STATEMENT
) D'
2 N ?nPROCEDURAL—? J>)3
(I STATEMENT © C
L-—--—u—
)R e
END PROGR
3(GRAN o

166

5.1.1 Program
A Program is the highest component available in the language. A Pro-
gram must start with a BEGIN PROGRAM STATEMENT and end with an END
STATEMENT. A Program has two main parts: (1) a Declaration Section,

and (2) a Procedural Section.

The Declaration Section consists of Declaration Statements. This
section is optional. A1l Names used within the Procedural Section
must be declared; therefore, the use of the Declaration Section depends
upon the use of Names. If no Names are used in the Procedural Section,
the Declaration Section is not required. Data defined in the Declara-

tion Section is valid only in that Program.

A Procedural Section is required. It consists of Procedural Statements
which do the actual testing of the system under test. A Program may
contain only one BEGIN PROGRAM STATEMENT. It may also contain only

one END STATEMENT which invokes the End Program option.

A1l Statement Numbers are local to the program; that is, a Procedural
Statement cannot reference a Statement Number located within a Subrou-

tine. Likewise all Names are local.

167

r“;;r-A BANK 1 F"’E‘Eé?ﬁ'ﬁm“g

! DEFmITION } STA%AE%&%NT B

1 A E_ SPECIFY '"ﬁ

(U STATEMENT F

| |

24 END DATA
-

168

BANK

® @

5.1.2

Data Bank

The Data Bank must be bounded by a BEGIN DATA BANK STATEMENT and an
END DATA BANK STATEMENT. The only statements allowed in the Data Bank
are the SPECIFY STATEMENTS. This should not be confused with the option
to insert the other GOAL components? specifically Subroutines and
Macros, between any two SPECIFY STATEMENTS.- The informational content
of the Data Bank indicates a data set with the following characteristics:
1. The Data Bank must be capable of storing unique data for é
large number of individual entries.
2. The ability to reference, via alphanumeric name, any entry
in the Data Bank. .
3. Most of the content of the Data Bank will be entries related

to Function Designators but Subroutines will also be present.

The Data Bank will be present only during compile time. The actual

Data Bank entries are directly dependent upon hardware design.

The Data Bank provides the necessary linkage between Function Desié— .
hators.and the System Under Test. fhe use of pérti§u1ar Data Banks

can be controlled during compi]atién by the USE DATA BANK STATEMENT
and the FREE DATA BANK STATEMENT.

169

| T

SUBROUTINE | SUBROUTINE | b
DEFINITION g [
e L. DEEWITION |
o e . G ey
DECLARATION |
- STATEMENT |
D TSR GBI Sl
3 _)
1¢ (2
L
, L g PROCEDURAL L,)3
(—3% STATEMENT ~ ¢
L-—-—-mmJ
3 ()— END SUBROUTINE

170

5.1.3

5.1.3.1

5.1.3.2

Subroutines

A Subroutine is bounded.by a BEGIN SUBROUTINE STATEMENT and an END
STATEMENT, It may have a Declaration Section, but must have a Pro-
cedural Section. Parameters may be passed to the Subroutine through
the BEGIN SUBROUTINE STATEMENT. As in the Program, the use of a
Declaration Section depends upon the use of Names in its Subroutine
since all Names must be declared. A1l Names declared are Tocal; i.e.,
NamesAdeclared in a Subroutine cannot be referenced by the calling

program.

Program Subroutine Interaction

The Subroutine may be executed only via a PERFORM SUBROUTINE STATEMENT.
This statement will carry the Parameters, if any, to be passed to the
Subroutine. If this statement also carries the adjective, CRITICAL,
then the execution of the Subroutine will not be broken by a Language

Level Interrupt occurrence.

Program Subroutine Similarities

The Program component and Subroutine component are similar in many
ways:

1. Both may be entered only through their Begin Statements.

2. Al11 branching is local; i.e., once inside a Subroutine, as
with a Program, you cannot branch outside its boundaries,
and you cannot branch into a Suﬁroutine or Program from an
external source.

3. Neither allow component nesting; i.e., no Begin Statement
of the same component is allowed between the Boundary State-

ments of the component.

171

5.1.3.3

4. A1l Procedural and Dec]aration Statements are legal.
5. Data defined in a Program is local to that Program and data
defined in a Subroutine is local to that Subroutine. If a
Name is to be used in a Subroutine, it must be declared in
the Subroutine.
6. Both may be terminated-by a TERMINATE STATEMENT or by a ter-
mination default when an END STATEMENT is encountered.
Note: A Program is not terminated when a Subroutine encounters a
terminate command, unless it is a terminate.system command.
Execution is returned to the next Program statement after the calling
PERFORM SUBROUTINE STATEMENT. However, if the execution of the Sub-
routine is due to a Language Level interrupt, then control is returned

to Program as directed by the WHEN INTERRUPT STATEMENT.

Program Subroutine Differences

There are several ways in which Subroutine ccmponehts differ from Pro-
gram components. These are:

1. A Subroutine may be executed only via a PERFORM SUBROUTINE
STATEMENT.

2. A Subroutine inserted in a Program is avai]ab]e only to that
Pfogram. By convention it is recommended that all Subroutines
be placed between the Declaration and Procedural Sections of
the Program component. This is not a reqﬁirement; however,
and Subroutines may actually.be placed between any two state-
ments either in a Program or a Data Bank.

3. Data defined outside a Subroutine is available only through
the Begin Statement.

172

5.1.3.4 Subroutine Advantages

It is to the procedure writer's advantége to use Subroutines whenever

a task is to be performed more than once in his procedure because:

1. It provides more efficient coding.

2. It provides procedure modularity resulting in ease of change

and debug.

3. It provides quicker and easier review of a procedure by

allowing a repeatable task to be performed and then return

to the next statement following the PERFORM SUBROUTINE

STATEMENT 1in the Program.

For example: in the following

Subroutine, control will be returned to Step 2 after the

execution of the END STATEMENT in the Subroutine.

5.1.3.5 Subroutine Example

GOAL PROGRAM

GOAL SUBROUTINE

OPEN<LOX VENT VALVE >
PERFORM SUBROUTINE (STATUS CHECK)

<pus 1> ,<BUS 2> ;

STEP 2 CLOSE<C LOX VENT VALVE > ;

PERFORM SUBROUTINE (STATUS CHECK)

<Bus 3> ,<BUS 4>

BEGIN SUBROUTINE (STATUS CHECK)
<A> <> s

VERIFY<A™> IS ON;

VERIFY IS ON;

TURN ON<C SYSTEM INDICATOR > ;
END SUBROUTINE;

Implies one or more statements

RE

5.1.3.6 Subroutine Parameter Replacement

PROGRAM L SUBROUTINE

DECLARE QUANTITY {(Z) BEGIN SUBROUTINE (SA)

<A>, (B}, (C), (E);
DECLARE QUANTITY (B);

P s

DECLARE NUMBER (D);
PERFORM SUBROUTINE (SA)
< CONSOLE 1>, (2), 15V, 25 | TURN ONCSHITCH 12> ;

DISPLAY TEXT (BEGIN SA) TO<A > ;
READ< BUS 1> AND SAVE AS (B);
APPLY (C) TO BUS 2 > ;

LET (D) = 3 + (E);

IF (D).= 7 THEN TERMINATE;

TURN OFF < SWITCH 1_> ;

—i

END SUBROUTINE;

After execution of Subroutine (SA) the parameters will be replaced as
follows:

TURN ON < SWITCH 1> ;

DISPLAY TEXT (BEGIN SA) TO< CONSOLE 1> 3

READ< BUS 1> AND SAVE AS (Z);

APPLY 15V TOBUS 2 > 3

LET (D) = 3 + 2;

IF (D) = 7 THEN TERMINATE;

TURN OFF </SWITCH 1>

END SUBROUTINE;

174

AFTER EXECUTION OF SUBROUTINE
(Z) = BUS 1 READING
(D) = 5

NOTE- (Z) DATA AVAILABLE TO PROGRAM
(D) DATA SUBROUTINE ONLY

175

.

r B BEGIN MACRO

| MACRO ; i

DEFINITION i statement F
Fummmm

P | CHARACTER !
(* USTRING F
L%fwmn

END MACRO NOT ALLOWED
28 END —— MACRO .

176

8 e

5.1.4

Macro

A Macro is a named Character.String. A Macro must start with a BEGIN
MACRO STATEMENT and end with an END STATEMENT. The Character String,
between the BEGIN MACRO STATEMENT and END STATEMENT, is defined as a

Macro skeleton and is made up of any combination of GOAL characters.

The only exception is the Character String "END MACRO" which is invalid.

Once the Macro is defined, each reference to the Macro Label by an
EXPAND MACRO STATEMENT will cause the Macro skeleton for that Macro to
be inserted into the source program. A Macro may be inserted anywhere
within a Program as long as it is defined prior to its use by an EXPAND
MACRO STATEMENT. By convention, Macros should be grouped together and

should immediately follow the Begin Statement of the host component.

The BEGIN MACRQ STATEMENT allows the test writer to assign an arbitrary
Name to Parameters. The Parameters may be any legal Name and must be
unique only within the Macro. In other words, a Parameter definéd
within a Macro may also be defined as a Name within the main program
without being multiply defined. The same Parameter could also appear

in several Macros and also as a Name in the main body of the Program
and not be in error. A Parameter may be referenced as many times as
desired within the Macro skeleton. The EXPAND MACRO STATEMENT specifies
the contents, substitutable arguments, of the Parameters defined in the.

BEGIN MACRO STATEMENT.

.The EXPAND MACRO STATEMENT allows the test writer to define the nec-

essary Character Strings which are used to replace the corresponding
substitutable arguments in a Macro skeleton. When the EXPAND MACRO
STATEMENT 1is processed, the list of Parameters in the BEGIN MACRO

177

STATEMENT is linked one-to-one to the Character Strings in>the EXPAND
MACRO STATEMENT. The first Parameter is linked to the Character String
between the first and second commas. The second Parameter is Tinked
to the Character String between the second and third commas. This
connecting process continues until .all Tisted Parameters are linked

to a specific Character String. The Language Processor then searches
the Macro skeleton for substitutable arguments. When a substitutable
argument is located, it is replaced by its corresponding Character
String. The Language Processor continues its search of the Macro
skeleton until it encounters an END MACRO STATEMENT. The Language
Processor then inserts the Macro skeleton with the substituted Charac-_
ter String in the source Program. The printing of the Macro skeleton
is contro?]ed by the EXPAND MACRO STATEMENT. The control that the
EXPAND MACRO STATEMENT has over the Macro skeleton is shown in the
following examples. A Macro definition is given first and followed

by an Expand option.

The Expand option prints only the Macro skeleton after the Character

String has been substituted.

The Execute dption is shown next. The Execute option results in the
print of the Macro Label and the substituted Character Strings. The
Expand and Execute option is shown last. This option results in a

printing of a combination of the two other options.

178

5.1.4.1 Macro Example

GOAL PROGRAM
(Card Listing)

BEGIN PROGRAM (EXAMPLE)

REVISION 2;
BEGIN MACRO STATUS

(A), (B);
VERIFY (A) IS OFF;
VERIFY (B) IS OFF;
END MACRO

EXPAND STATUS
, <PREFLT CAL ON >

, < INFLT CAL ON >3

EXECUTE STATUS
, < PREFLT CAL ON >

, < INFLT CAL ON >,;

EXPAND AND EXECUTE
, < PREFLT CAL ON >

, < INFLT CAL ON >

GOAL PROGRAM
(Processor Listing)

BEGIN PROGRAM (EXAMPLE)

REVISION 2;
BEGIN MACRO STATUS

(A), (B);
VERIFY (A) IS OFF;
VERIFY (B) IS OFF;
END MACRO

VERIFY <PRELFT CAL ON > ‘IS OFF;
VERIFY <INFLT CAL ON >IS OFF;

STATUS ,<_PREFLT CAL ON™>
, < INFLT CAL ON >,;

S .

STATUS, < PREFLT CAL ON >

. < INFLT CAL ON > ,;

VERIFY < PREFLT CAL ON > IS OFF
VERIFY <{INFLT CAL ON _>IS OFF;

Implies one or more statements

179

o] o)

i i | LEAVE . 1
DATA DEFINITION &~ STATEMENT ¥
g DATA DEFINITIO! | TATEMERT ¢
P! 5" NON-GOAL _1 D] 7
C i DATA v C
LO_— R I WJ
D) e
2¢ RESUME 5

180

5.1.5

-Non-Goal

A NON-GOAL component consists of a package written in another language.
Since it is impossible to predict all testing capabilities that are
required of a test language, the GOAL test language provides for the
use of other languages. The availability of other Tanguages to be
used as a NON-GOAL component is directly dependent upon the design

of a total test system. |

A compatible language may be used to create a NON-GOAL component by

compiling the other language routine by its own compiler. The object
deck of the other language is inserted in a Data Bank Subroutine. The
object deck must be immediately preceded by a LEAVE STATEMENT and must
be immediately followed by a RESUME STATEMENT. Such a Subroutine may

also contain additional GOAL statements, if necessary.

The execution of a NON-GOAL component is controlled by a PERFORM SUB-
ROUTINE STATEMENT. Once control is passed to a Subroutine any GOAL
statements preceding or following the NON-GOAL component will be

executed in their normal sequence.

When a LEAVE STATEMENT is encountered by the executive, control is
pasSed to the NON-GOAL component. After execution of a NON-GOAL com-
poneht, control may be returned to the Data Bank Subroutine at the
RESUME STATEMENT. The remaining GOAL statements are then executed in
their normal sequence. Coﬁmunication between the Data Bank Subroutine
and the NON-GOAL component may be achieved by passing data declared

in the LEAVE STATEMENT.

S181

5.2

5.2.1

5.2.2

LANGUAGE SYSTEM CONCEPTS

The LANGUAGE SYSTEM contains three major divisions. Namely, the lan-
guage, the Language Processor,'and the system executive. Each of these
divisions overlap somewhat in function. It is sometimes very difficult
to distinguish between a language function, processor function, or

executive function.

Language

The Tanguage must provide statements which will contain a complete
command, just as an English statement requires all of its parts to be
complete. It must make sure that its statement contains information
that will be recognizable by the processor, and that each statement
contains enough information to enable the executive to perform the

command ,

The Tanguage is required to contain all the information necessary to

provide a complete checkout of the system under test.

Language Processor

The Language Processor is responsible to check the language statement
to verify the statement syntax. The processor must convert the program
stafement from its input source format into an executive-recognizable
format. It must not only assure correct grammar but also that all
parts of the statement that are necessary for a command to be performed

are present in the statement.

The processor must link the test program to the system under test via
the Data Bank. It relates statements to statements and verifies that

languége components are properly combined.

182

5.2.2.1

System Subroutines

Subroutines may be inserted between any SPECIFY STATEMENTS in the Data

‘Bank. The Subroutines would then be available to any program at com-

5.2.2.2

5.2.2.3°

pile time.

When a system Subroutine is requested in a program by a PERFORM SUB-
ROUTINE STATEMENT, the Language Processor will first try to find a
Tocal Subroutine and will then look for a system Subroutine. If none

is found, an error condition will be flagged.

System Macros

System Macros will be available to any program via a system Macro

package in the Language Processor.

When a Macro is requested in a program by an EXPAND MACRO STATEMENT,
the Language Processor will first try to find a local Macro and will
then Took for a system Macro. If none is found, an error condition

will be flagged.

Processor Options

The GOAL processor will provide several options. These include:

1. Source Listings - Listing of all source records processed.

2. Expanded Statement Listing - A Tisting of all statements
after processing with compiler generated step numbers.

3. Statement Label Cross Reference - A list of all statement
Tabels defined or referenced in a GOAL program.

4, 1Internal Name Cross Reference - A Tisting of all symbolic
names defined or referenced in a GOAL program.

5. Function Designator Summary - A listing of all Function Desig-
nators referenced in a GOAL program.
183

5.2.3

5.3

6. Diagnostics Summary - A listing of all errors detected.

Several directives will also be provided, including:

1. Sequencing Field Size

2. Edit Only
3. List output report selection
4, Title for listing page
5. Date for Tisting page
6. Number of 1ines per page on printer listing
7. Page counter
Executive

The executive must take the output of the Language Processor and per-
form the necessary program functions. The executive must handle such
items as scheduling events, timing for data acquisition, engineer-

executive communication, etc.

Many language statements are high]y.implementation dependent. The
result of a statement may be considerably different depending on how
the executive handles the statement. It is conceivable that language
statements written prior to development of an executive may have to be
changed somewhat after executive development. For example, a statement
is legal which says "EVERY 2 SECS CONCURRENTLY PERFORM PROGRAM (A);" but
the executive may be unable to handle a 2 second cyclic rate for pro-

gram execution, thus a minimum cyclic rate would have to be imposed.

PROGRAMMING CONCEPTS

Many concepts were legislated during the development of the GOAL

184

language. Five of the more special concepts are discussed in the
following items: concurrent processing, language level interrupt,

table techniques, program termination, and dimensions.

5.3.1 Concurrency

Concurrency is used within this write-up in the general context which
assumes at least a second, independently compiled, test application

task may be initiated prior to the completion of another task. This
does not force a selection of either a multiprogramming system or a

parallel processing system. The effort was made, assuming some con-
currency does exist, to ascertain what information required can best
be specified at test preparation time and how this information can be

presented in a readable manner.

‘The test environment appears to dictate that a "reactive monitor" is
needed. This is long term surveillance of a test condition coupled
with the capability to initiate commands if the status violates limits.
Conventional monitoring is embedded in this capability. The CCNCURRENT
STATEMENT in GOAL provides the "reactive" capability by allowing another
program to be performed. The statement provides a simplified method
of_supp]ying monitor only parameters for either continuous monitoring

or exception monitoring.

5.3.2 Language Levél Interrupts

Language Level Interrupts indicate to the executive that an external
event has occurred, and that this particular event requires attention.
Language Level Interrupts permit key Function Designators to interrupt
the execution of a test program and automatically transfer control to

185

,,,,,

a spec1f1ed Interrupt reg@mgngSubroutwne and also to another language
statement. After executxenﬁcﬁFan Interrupt response Subroutine, con-
trol is returned to the calling program. Language Level Interrupts

are not to be confused witthystem Interrupts, that control the execution
of the executive during th;zﬁandling of such items as timing or commu-
nication. The term In&gvrdpt in this document refers to a Language

Level Interrupt if not othewmﬁse stated.

A Function Designator can interrupt a test program only if the following
three (3) steps are performed.

(1) The Function Designator must be declared as an
Interrupt w1£h\n .he Data Bank. The necessary
conditions far'the interruption to occur must
also be defined in the SPECIFY STATEMENT.

(2) A WHEN INTERRUPT STATEMENT that references the
Interrupt Funcfion Designator must be previously
executed. The WHEN INTERRUPT STATEMENT enables
thé Interrupt. It also defines where control is
to be passed‘atﬂthe occurrence of the Interrupt.

(3) Finally, théiésgditions specified for the Interrupt
must be met and the Interrupt Function Designator
must still be enabled and not suspendedf The
execution of the test program will then be

interrupted for servicing of the Interrupt.

An Interrupt enabled for a particular program is suspended during

execution of a Subroutine. That is, if an Interrupt enabled in a

186

program occurs during the execution of a Subroutine, the Interrupt

will not be serviced until control is passed to the calling program.

An Interrupt that occurs during the execution of a Subroutine will be
serviced only if the Interrupt was enabled by the Subroutine. An
Interrupt enabled by both the program and Subroutine that occurs during
the execution of the Subroutine will first be serviced during execution
of the Subroutine. If the Interrupt is still active when control is
returned to the calling program, it will be serviced for the second

time during the execution of the test program.

The WHEN INTERRUPT STATEMENT enables an Interrupt and the DISABLE
INTERRUPT STATEMENT disables the Interrupt. If an Interrupt dcéurs
after it has been disabled, it will not be serviced, the execution
of the test prégram will not be interrupted by the occurrence of an

Interrupt that is disabled.

The WHEN INTERRUPT STATEMENT may also specify a Statement Number in-
stead of a Subroutine. In this case, control will be passed to the

indicated statement at the time of an Interrupt occurrence.

The following Examples show various types of Interrupt conditions.

187

5.3.2.1

Language Level Interrupt Examp]es '

TERMINATE;

PROGRAM A SUBROUTINE SA
S10 WHEN INTERRUPT< X >OCCURS | S5
G0 TO STEP 500; }
540 }
70 WHEN INTERRUPT< X >OCCURS : S10 WHEN INTERRUPT< X >OCCURS
|
GO TO STEP 700; ; GO TO STEP 20;
i
$90 ;
S105 PERFORM SUBROUTINE (SA); |
5200 | S15 LET (A) = (B);
— :
| s20 SET < SYSTEM FLAG >TO ON;
$500 OPEN<VENT VALVES >; | S22 DISABLE STEP 10;
TERMINATE; i
S700 TURN OFF <SYSTEM POKER>; |
:
TERMINATE; | S30 ASSIGN (K) = OFF;
I s36 I
|
|
l
i
|
|
|
i
1

" e IMPLIES ONE OR MORE STATEMENTS

188

INTERRUPT ASSUMLZIONS

Example 1. 4+
CONDITION:

EXECUTING IN "A"

@ STEP 10 PREVIOUSLY EXECUTED AND STILL ENABLtD.

® STEP 40 IS BEING EXECUTED WHEN INTERRUPT'<:X:> OCCURS.
- RESPONSE:

® STEP 40 IS COMPLETED

® EXECUTION IS RESUMED AT STEP 500.

Example 2.
CONDITION:

"AY IS EXECUTING

® STEP 10 IS EXECUTED

® STEP 70 IS EXECUTED

@ STEP 90 IS BEING PROCESSED WHEN INTERRUPT < X > OCCURS.

RESPONSE :

@ STEP 90 IS COMPLETED

® ° EXECUTION IS RESUMED AT STEP 700;

COMMENT :

| THE EXECUTION OF STEP 70 HAD THE AFFECT OF DISABLING STEP
10 BECAUSE THEY REFERENCED THE SAME INTERRUPT.

‘Example 3.
CONDITION:

® STEP 70 IN "A" PREVIOUSLY EXECUTED.
@ "SA" IS EXECUTING AS A RESULT OF STEP 105 IN PROGRAM A.

189

Example 3 (CTD):

© STEP 5 IS BEING EXECUTED WHEN INTERRUPT <(X> OCCURS.

RESPONSE : |

® "SA" CONTINUES NORMAL PROCESSING

COMMENT :
WHEN CONTROL IS RETURNED TO PROGRAM A AT THE STEP IMMEDIATELY
FOLLOWING STEP 105, THEN THE INTERRUPT ACTION IS NOTED AND
CONTROL DIVERTED TO 700.

Example 4.
CONDITION:

@ STEP 70 IN "A" PREVIOUSLY EXECUTED.
@ "SA" IS EXECUTING AS A RESULT OF STEP 105 IN PROGRAM A.
® STEP 10 IN "SA" PREVIOUSLY EXECUTED.
@ STEP 15 IS EXECUTING WHEN INTERRUPT <{X> OCCURS.
" RESPONSE : '
'@ STEP 15 COMPLETES PROCESSING.
® STEP 20 IN "SA" IS THE NEXT STEP PROCESSED.
COMMENT : |
WHEN CONTROL IS RETURNED TO PROGRAM A AT THE STEP IMMEDIATELY
FOLLOWING STEP 105, THEN THE INTERRUPT STATUS.OF <> IS
TESTED AND IF STILL ACTIVE CONTROL IS RESUMED AT STEP 700.

Example 5.
CONDITION:

@ STEP 70 IN "A" PREVIOUSLY EXECUTED.
‘D @ "SA" IS EXECUTING AS A RESULT OF STEP 105 IN PROGRAM A.

VI 190

Example 5 (CTD):
@ STEP 22 IN "SA" PREVIOUSLY EXECUTED.
® STEP 36 IN "SA" IS BEING EXECUTED WHEN INTERRUPT < X>> OCCURS.

RESPONSE :
® "SA" CONTINUES NORMAL PROCESSING.

COMMENT :
THE INTERRUPT HAD NO AFFECT ON "SA" AS STEP 22 HAD CANCELLED
THE REQUEST FOR INTERRUPT ACTION. EVEN THOUGH THE STEP 22
DISABLES STEP 10, THIS IS STEP 10 WITHIN "SA" ONLY.

© 1971

5.3.3

Table Techniques

Tables are especially suited to test applications involving test pat-
terns such as those required in the testing of voting logic and inter-

face connections.
The Declaration of tables is discussed in Section II.

The general format of a table is depicted below.

TABLE NAME
' 'y
- 7/
COLUMN COLUMN COLUMN COLUMN
NAME NAME NAME NAME
oy s
Y
Row 1 FUNCTION - data data data data
DESIGNATOR ' o
4
” - 7/
Row 2 . FUNCTION - data data data data
DESIGNATOR -~ |- . ‘ .
N N gy
- ; : . , 7/
"~ Row 3 - FUNCTION data data data . data
' . DESIGNATOR ‘
Row Rn FUNCTION . | data data ‘data " data
. : DESIGNATOR " . . .) :
') 1T 2 o 37 toen
L £olumn

. Numbers

Note that éow numbers and columns are not part of the table.itself but"
may be used by statements referencing the table to Tocate data or data
storage. Any reference to non-existent rows by using the Row Number

feature will be flagged as an error at processing time.

192

If by an erroneous calculation an Index Name contains a reference to
non-existent data location, then the executive system should indicate

the error. This applies for columns also.

If the same Function Designator appears more than once in the table
outline, then the entries are flagged as possible errors. If an

ACTIVATE TABLE STATEMENT or INHIBIT TABLE STATEMENT later uses this
multiple entered Function Designator as a Row Designator, then the
processor will direct the action to be taken‘on,a11 rows with that

Function Designator.

DECLARE STATE TABLE (ENGINE LOGIC) WITH 5 ROWS AND 3 COLUMNS
TITLED |
(PASS 1), (PASS 2), (PASS-3) WITH ENTRIES
< ENG 1 IGN PHASE

SOLENOID> 5 ON, N,
<ENGINE NO 1 o
'. ~(~:U.TOFF‘>"_, . ON, OFF, L
< START TANK ALL S
VENT > SOOFF,. OFF,
<ENG 1 ST.TANK | L
'DISCHARGE CONTROED> , ON, ON, - . .,
< MAIN STAGE CONTROL o
SOLENOID> ; ON, * OFF, -

Example 1: TURN ON (ENGINE LOGIC) FUNCTIONS;
Examp]é 2: SET (ENGINE LOGIC) FUNCTIONS TO (PASS 1);

193

Example 3: READ.(ENGINE LOGIC) FUNCTIONS AND SAVE AS (PASS 3);
Example 4: VERIFY (ENGINE LOGIC) FUNCTIONS ARE (PASS 2);

194

DECLARE QUANTITY TABLE (BUS READINGS) WITH 4 ROWS AND 4 COLUMNS
WITH ENTRIES

<BUS 0>, 0V, 18V, .,

<BUS20>, 18V, 20V, , 12,

<BUS30 >, l2v, 8, , 25V,

<Bus40 >, 14, 20v, , 163

Example 1: VERIFY (BUS READINGS) FUNCTIONS ARE COLUMN 2;
Example 2: VERIFY (BUS READINGS) FUNCTIONS ARE BETWEEN COLUMN 1 AND
COLUMN 23
Example 3: INHIBIT (BUS READINGS) ROW 3;.
' ~ VERIFY (BUS READINGS) FUNCTIONS ARE LESS THAN COLUMN 3;
Example 4: READ<<:BUS 20::> AND SAVE. AS (BUS READINGS) ROW 3 COLUMﬂ
- 33

If the target hardwére system provides special facility to group
commands , then it is assumed the'pkogessor will package fhe commands
togethe% pfovidfng all ‘the finctions for the table belong to tﬁe
" same group. .This is an implementation option.._Tﬁg functions'wiTL'
otherwise be issued in a serial haﬁner starting with Row 1 and'pro—

ceeding to Row N. Rows that are inhibited wi1} be ignored.

195

[

DECLARE STATE TABLE (POWER) V@ﬂ?ﬁ%&ROWS AND 3 COLUMNS TITLED

slN), (BACK UP), (INITIAL STATE)

WITH ENTRIES

$ ROW T3<MAIN POWER 1>, ON, OFF, .
§ ROW 2;< MAIN POWER 23>, ON, OFF, :
$ ROW 33 < BACK UP POWER 1> . Z30FF, ON, :
$ ROW 43 < BACK UP POWER 2 > "o, ON, :

DECLARE TEXT LIST (POWER MESSAGE LIST) WITH 4 ENTRIES
$ MESSAGE NO 1; (MAIN POWER SUPPLY NO 1 IS NOT ON),
$ MESSAGE NO 2; (MAIN POWER SUPPLY NO 2 IS NOf ON),
~ § MESSAGE NO 3; (BACK UP POWER}SQEPLY NO 1 IS ON),
$ MESSAGE NO 4; (BACK UP POWE@%%??PLY NO 2 IS ON);

Example: VERIFY (POWER) FUNCTIONS ARE EQUAL TO (MAIN) ELSE DISPLAY
EXCEPTIONS USING MESSAGES FROM (POWER.MESSAGE LIST) AND
STOP;

The message Tist myst be as Tong as, or Tonger than, the power table.
The exception is.that one message may:be used for many exceptions by

explicitly denoting or referencing oné:'message.

196

'Qv,

When the Table Name is'used without row/column modification, then
the action is taken for all active functions in the table. Also note
that (INITIAL STATE) may be a column name in the (POWER) table in
which case the rewriting of the Table Name is optional. When the
example is executed, a reading is performed to obtain the latest
available data and then the comparison is made. The order starts
with Row 1. If an item fails to pass the Comparison Test, then the
corresponding message Tist entry is displayed; e.g., if entry 4 in
the (POWER) table failed, then message 4 is dispTayed. Message -

- correlation Ts done regardTess:if ény of the preeeding nows were

inhibited or not.

Program 1erm1nat1on

,‘System assumpt1ons were made for program term1nat1on capab111ty for
ser1a1 and-concurrent process1ng Two term1nat1on opt1ons are pro-

_'yided:; "TERMINATE“'and "TERMINATE SYSTEM v f

'SeraaT Process1ng B

. '_iConSTder PROGRAM A performs PROGRAM B If a TERMINATE is’ -
‘”executed in PROGRAM B then process1ng of PROGRAM B ceasés V"l

f_and controT is returned to PROGRAM A and PROGRAM A cont1nues
'waever, if 1n the above exampTe a TERMINATE SYSTEM ‘had been .l'
-enqquntered in PROGRAM.B 1nstead of a:normal TERMTNATE,.then_

" not onTy would PROGRAM B be stopped but also the_cnain of
execution through which execution was initiated, in this case,
PROGRAM A. The effect woqu.be the same if instead of PROGRAM
B, it was a Subroutine,tnat PROGRAM A had executed.

o

5,35

‘insure the cons1stent use ‘of compat1b1e D1mens1ons by proceduraI

Concurrent Processing:
Now assume PROGRAM A performs PROGRAM B concurrently with a
five minute cycle rate. If a TERMINATE is executed in PRO-
GRAM B, then PROGRAM B stops execution and remains stopped
until the concurrency rate requirements are met and then

program B is executed again.

Using the same example, assume a TERMINATE SYSTEM was en-
countered. The program stops execution and also the request
for concunrent execytion is cancelled. PROGRAM B would not
be automat1ca11y recaT]ed by the system .PROGRAM A nouldinoc .
,-be term1nated If PROGRAM A was dependent on PROGRAM B s:
cont1nued execut1on, then care should have oeen tdKen for
’ PROGRAM B to 51gna1 PROGRAM A, probabTy by a system 1nd1cator,'.'
. before execut1ng the TERMINATE SYSTEM '

Dxmens1ons

.£_D1mens1ons are a110wed to promote the readab111ty of the statements

u51ng or referenCIng the data assoc1ated w1th the glven Bimens1on

7Standard abbrev1at1ons are allowed and are va11dated by the Language

-LProcessor The test'erter must take ‘the necessary precaut1ons to

. statements The processor/execut1ve is not expected to perform

compat1b1]1ty checks A<g1ven system may elect to implement a -

processor that recognlzes certain engineering units as scaling direc-

tives to the processor but to proceed much further appears un]ikéTy

at this time.

198

If the full name of the basic unit Dimension is used, then either

plural or singular will be allowed.

199

DIMENSION TABLE Engineering units available for use in GOAL are listed in the
following matrix.

FUNCTION

TYPE BASIC UNIT x100 X103 %100 1073 X106
volts ac/dc volt V My yv
current ac/dc ampere A MA UA
hertz HZ KHZ MHZ
frequency pulses per
second PPS . KPPS
day DAY
_hour HR
time minute MIN
second SEC MSEC USEC
resistance 1 ohm OHM KOHM MOHM
inductance i henry H MH UH
capacitance { Tarad FD UFD
{watt W KW MW UW
power 1 voltage, cur-
{1 rent or power DB
ratio percent PCT
pounds per PSIG
square inch PSIA
PSI
millimeters of
pressure "1 mercury MMHG
. inches of _
| mercury INHG
millibars MB
i inch IN
foot FT
distance meter M KM MM
’ nautical
fmile NM
feet per
1 second FT/SEC
. meters per
velocity second M/SEC
knot KT
mach no. MACH
degree DEG
arcmin ARCMIN
angle arcsec ARCSEC
radian RAD MRAD
revolution REV
degrees
centigrade DEGC
temperature degrees
fahrenheit DEGF

CAUTION -~ The writer must take necessary precautions to insure the
consistent use of compatible dimensions.

200

Other allowable dimensions are:

KILOVOLTS (AC or DC)
DECIBELS above one milliwatt
DECIBELS above one watt
KILOVOLT AMPERES

VOLT AMPERES REACTIVE
KILOVOLT AMPERES REACTIVE
PICOFARADS

MASS (grams)

ACCELERATION

 20‘1 :

KV
DBM
DBW
KVA
VAR
KVAR
PFD
G

M/SEC/SEC
FT/SEC/SEC

SECTION VI, GOAL ELEMENTS
6.0 GENERAL
This section discusses the elements which are the most basic syntax

groupings of GOAL.

202

203

10
——7 CHARACTER

LETTER
mmmmm —] el
1/ r =
CHARACTER frde—m—d HUMERAL
mmmmm 203 L 2
R |
SYMBOL
' LETTER A
[s
— C
D
E
F
G
H
| —
— J
K
_____ L
r 1 "
i LETTER — N
I hid 0
P
Q
R
S
T
U
v
— W
— X
[.: Y
YA

204

6.1

6.1.1

6.1.2

CHARACTER SET
These elements define the basic language Character Set. All Tanguage
statements or elements can be traced to a basic makeup consisting of

these elements.

Character
The Character element diagram is a composite showing that the full
GOAL Character Set is made up of Letters, Numerals, and Symbols. It

provides a cross-reference to the basic language characters.

Letter

The Letter element defines the Tetters avajlable in the GOAL Character
Set. These are all letters A-Z. They must always be written in the
Upper Case. By convention the letter "0" should be slashed "§" and

the letter "I" should be written as "I", and not as "1".

205

0
-1
2
mmmmm 3
r 1 4
| NUMERAL - 5
| I 39 6
7
-8
9
SYMBOL
= =771
i SYMBOL t * ASTERISK
L 5y |
-4 BLANK
9 COMMA
$ CURRENCY
= EQUALS
< LEFT ANGLE BRACKET
> RIGHT ANGLE BRACKET
— — ———] MINUS
— { LEFT PARENTHESIS
—] — RIGHT PARENTHESIS
—— o —— PERIOD
— PLUS
e 3
— g SEMICOLON
°]
l / SLASH

206

6.1.3 Numeral

The Numeral element defines the Numerals available in the GOAL Character

Set. The allowable Numerals are (-9.

The Numeral, zero, "0" should not be slashed and the Numeral one,

"1*, should be written as "1" and not as “I".

6.1.4 Symbol
The Symbol element defines the special Symbols available in the GOAL

Character Set. All special Symbols used in the GOAL Character Set are -
standard to the (ASCII) USA Standard Code for Information Interchange
Code and the (EBCDIC) Extended Binary Code DecimaT Interchange Code.

207

CHARACTER STRING

’ P
pirmrers R Enomtry
| CHERAL CHARACTER O

e e e e v e I]

TEXT CONSTANT

P ey | oo 1

| TEXT CONSTANT ¢ (CHARACTER)

ﬁ
19 1 STRIRG 1

| I L |

NO PARERTHESIS ALLOWED
BLANKS AND COMMENTS
ARE SIGNIFICAHNT

208

6.2

6.2.1

6.2.2

CHARACTER GROUPS

These elements show how thevbasic chafacters may be linked together.
These text strings are of two types: (1) an undelimited Character
String, and (2) a delimited Character String (Text Constant) which is

given definite syntax attributes.

Character String

The Character String element allows Letters, Numerals, and Symbols to

be pYaEed side by side forming a string of characters.

Text Constant

The Text Constant element defines a block of Text data. It is delimited
by parenthesis. Blanks are significant and could be used for formatting
the Text Constant. Comments, per se, are significant in the Text Con-

stant and if used will become a part of the Text Constant.

.20»9"«

FUNCTION DESIGNATOR

‘ I R
F=—"""1
[-§ LETTER
______ : 43
r FUNCTION 1 < L__m_,__.g.ﬁ >
| oesicnator | o o
NUMERAL
Lo e U
ASTERISK \ * j
COKMA 9
EQUALS —
HINUS -
PERIOD ®
PLUS +
SLASH /

210

6.3

6.3.1

EXTERNAL REFERENCE
These elements iﬁéfude syntactical units defining Data Bank Function

Designators, aﬁdiﬁwévide elements to use in referencing these Function

Designators.

Function Designaloy.

Function Desigqgtgrs are items which interface, via the Data Bank, with
the System Un&é;;%éét. ATl hardware linkages must be supplied by the
Data Bank at compile time. Function Designators are delimited by angle
brackets or “greater than" and "less than" Symbols. They are composed

of either Letters, Numerals, or a Symbol subset.

Function Designators are uniquely defined in a Data Bank via a SPECIFY

STATEMENT.

Blanks and Comments are not significant within the angle brackets,
therefore, care should be taken to ensure that the non blank characters

form a unique string with respect to other Function Designators.

Example: <LOX VENT VALVE> < POWER TRANSFER COMPLETE IND.>
< 111 COOLANT TEMPERATURE > <CLH2 VALVE 3 (H/L) >

211

(31

W EXTERNAL DESIGNATOR

[T\
I bt B

| besicrator |
o e e 33
™ xrernar | | S A |
! obEsigraTOR o
R 1 r .
j TABLE b— FuNCTIONS
L NAME)

ROW DESIGNATOR

=777

| ROW DESIGHATOR |- g FUNCTION

¢ DESIGHNATOR —

L RUST BE URIQUELY DEFINED IN
TABLE DECLARATION STATEMENT

212 .

6.3.2

6.3.3

External Designatdr

When a statement references theExternal Designator syntax element the
procedure writer has an option of referencing either a single Function

Designator or a group of Function Designators.

When used as a group these Function Designators, which are linkages to
test equipment external to the computer, must have been placed in a
table. Therefore to reference a group of Function Designators it is
necessary to give the table name and the word Functions. The word
Functions serves as an indicator to the Language Processor that the
Function Designators listed in the table will be the recipient df the

stated action.

Example: < LOX VENT VALVE >
(SWITCH POSITION) FUNCTIONS

A Row Designator provides a means of referencing a row in a table by
using the Function Designator in the Function column of that row. The

Row Designator is defined in the Table Declaration Statement.

213

FTTTT !
LETTER

Femmmmmy pmm——m | ST

| NARE —(— LeTTER |})

S T SR | \jwmm’
NUMERAL
I |

COLUMNNAME

Q- 1 =7

| COLUMN NAWE L o owame L

R | e 7

MUST BE PREDEFINED IN A TABLE
DECLARATION STATEMENT

214

6.4

6.4.1

6.4.2

INTERNAL REFERENCE
These elements include syntactical units defining variables that are

internal to the test program and not directly related to the system

under test.

Name

A Name is an internal variable defined at coding time. A Name may be
used as a flag or as a storage area. It is not accessible by any other
program or subroutine and is, therefore, local to the host component.
A1l Names must be unique in any one GOAL component. A Name must begin '
with a Letter and may consist of a combination of Letters and Numerals
only. Names are delimited by parenthesis. Neither blanks nor Comments

are significant and may be used freely within the Name.

Examplies: (DEGREES OF PITCH)
{TM CAL MODE RESULTS)

‘Column Name

A syntactic unit defined in a Table Declaration Statement and used to

name a column that is part bf the table being defined..

215

DATA BANK HAME

\ REV 0 /

="

FTT1

| DATA BAKK HARE [~

I

INDEX NAME

P

| INDEX HABE i

. =

7Y N
L MUST BE DEFINED IN A BEGIN

DATA BAHK STATEMENT

RAME |

| - 1

LIST NAKME

L or
IUST BE A HUMERIC DECLARATION

1

= 1
- usTHaME
I 1

PARAMETER

I 1 S——
I

MUST BE PREDEFINED IN A
LIST DECLARATION STATEMENT

rngncnou L
/—1 obesignator !
Lﬂ—__—g

| - PARAMETER
L——__—“J

N

T 1/ |

216 -

6.4.3

6.4.4

6.4.5

6.4.6

Data Bank Name

A syntactic unit defined in a BEGIN ﬁATA BANK STATEMENT used to name

the Data Bank component'being generated.

Index Name
An Index Name must be declared as numeric in a simple Data Declaration
Statement, The Index Name may be incremented or decremented by the

test writer using the LET EQUAL STATEMENT.

List Name

A syntactic unit indicating the name of a List and definéd in a List
Declaration Statement. If a List Name is used without an Integer

Number or an Index Name it refers to all variables in the List.

Parameter

A Parameter represents arguments to be reserved as pseudo entries in

a Macro or Subroutine, or to signify the passing of data to the Macro
or Subroutine using the EXPAND MACRO STATEMENT and PERFORM SUBROUTINE
STATEMENT. Parameters in the Macro are effectively text substitutions
only, but Parameters in the Subroutine represent either an Internal
Name or a Function Designator. Subroutine Parameters may be delimited
by parenthesis or angle brackets, as appropriate. A Macro Parameter

can only be delimited by parehthesis.

217

' PROGRAM NAKE

g NI S
| NAME sz ¢ g
I 1 [I———"l

'{MUST BE DEFIRED IN A
BEGIN PROGRAHM STATEMENT

) SUBROUTINE NAME

=" F==""7
| SUBROUTIHE HAME §~— -] HAME

‘zﬁﬁUST BE PREDEFINED IN A
BEGIN SUBROUTIME STATEMERNT

TABLE NAME
="
| TABLEwAmE | —| NAWE |-

MUST BE PREDEFINED IH A
TABLE DECLARATION
STATEMENT

218

6.4.7 Program Name

A syntactic unit defined in a BEGIN PROGRAM STATEMENT used to name the

Program.

6.4.8 Subroutine Name

A syntactic unit defined in a BEGIN SUBROUTINE STATEMENT used to name

a Subroutine.

6.4.9 Table Name
A syntactic unit defined in a Table Declaration Statement used to name

the Table being declared.

219

INTERNAL NAME

NAME |
iy
INDEX NAME
“““““ R RSN OSSR RIEd 36
- INTERNAL 1 T 1 L'__""""j
| NAME !] LIST NAME
mmmmm -352J L—am—:—w ﬁ OEED TRATS TR NS
" INTEGER
HUMBER
r TABLE .,.,.1 By
NARE _”17 : (
X USE ONLY IF TABLE

NAKE IS PREDEFINED

IN STATEMENT AND

REHMAINS UKCHANGED

DESIGHATOR { COLUMN “AMEIZE"-
p
INDEX HAME | INDEX NAME
36
ROW ?;:.-.:::.:‘:_3'5" cowmy — br——=—-1
INTEGER | T INTEGER
NUMBER NUMBER

i

220

6.4.10 Internal Name

Examples: (PRESSURE READING)
(MESSAGE LIST)
(SWITCH TABLE) ROW 3 COLUMN 4
(POWER) <C LAMP 12> (RESET)

An Internal Name may be one of three types -

A. NAME - an internal variable arbitrarily chosen by the test
writer.

B. LIST NAME - defined in a LIST DECLARATION STATEMENT and may
include indexing.

C. TABLE NAME - defined in a TABLE DECLARATION STATEMENT and
must contain either an indicator for ROW and COLUMN or at
least for a COLUMN. Indexing on ROWS and COLUMNS is also

available.

An Internal Name is made up of Letters and Numerals only. The first
character must be a Letter. Blanks and Comments are insignificant.

An. Internal Name is delimited by parenthesis.

221

e
LETTER
2

o T T i
| MACROLABEL {——s LETTER |}
. T . 1 8"’“""’”"""""“‘1
- NUMERAL
L_._._.._,.,.,?!l,,a
REVISION LABEL
===
LETTER
e =1 I -1
[REVISION LABEL f———— REVISION ———
| I—_.] I 1
NUMERAL

50l

| SRS, .-

222

6.5

6.5.1

6.5.2

LABELS
These elements include the syntactical units that are used for processor

and executive identification of a Macro, Program, and/or Data Bank.

Macro Label

A Macro Label is defined in a BEGIN MACRO STATEMENT. A Macro Label
names a combination of language statements that are created as exten-
sions to the language and are referenced in a procedure by the name
indicated by Macro Label. Parenthesis are not required as delimiters.
The first character must be a Letter. The Macro Label cannot contain

any symbols. The Macro Label allows free use of blanks.

Revision Label

The Revision Label indicates the revision of the GOAL component de-

fining it in that component's Begin Statement. It may be any combin-

ation of Letters and Numerals.

223

‘ PROCEDURAL STATEHENT PREFIX

TS WY T SRR mmmm m“w—m

STEP TiE

VERIFY

HUMBER PREFiX PREFIX
r-'a’;a“a'gana”;‘r‘"i b e b — e —d
| STATEMERT

PREFIX

224

6.6 OPTIONAL PREFIXES
These “elements define the éyntactica] units that may be combined with

any Procedural Statement. It also shows how the prefix elements may

be Tinked together.

6.6.1 Procedural Statement Prefix

Examples: STEP 65 WHEN<C CLOCK > IS -5 MINS,
STEP 43 AFTER< CLOCK > IS -5 MINS THEN
VERIFY< LOX VENT VALVE > IS OPEN,
IF (PRESS A) IS GREATER THAN 1500 PSIA THEN

The PROCEDURAL STATEMENT PREFIX allows Pfocedurai Statements to be
preceded by a combination of either Step Number and/or Time Prefix
and/or Verify Prefix. This allows a Procedural Statement to be
referenced by another Procedural Statement, to be executed dependent
upon a time condition; and/or to be executed dependent upon an event

occurrence.

225

STEP NUMBER

o e e e -3 ; STEP-———-\ e eme———y | A8
| STEP NUEBER) [] NUMERAL

O £ | s 30

——— 2

L “$' WILL BE PRINTED AS “STEP™

226

6.6.2

Step Number ‘
A Step Number: ma,qheused with any Procedural Statement. It provides

a means of “ié?ae.\inq or referencing a statement. The Step Number is

~comprised of Numerals only and is preceded by either an "S"Y, or “STEP".

If an "S$" is wvsed at coding t1me then the compiler will replace that
with "STEP" at comgﬂe time. On]y statements which are referenced by
other statements head have a Step Number. Step Numbers are not re-

quired to be m an*{ particular order. However, an ascending sequence

convention is recommended.

Step Numbers, when used to reference a specific Procedural Statement,

must reference a statement within the boundaries of the same GOAL com-

ponent. For example, a Step Number in a program cannot reference a
tement in a Subwutme of another Program. Step Numbers are there-

fore local to a component.

2271

TIME PREFIX

s e s e e AFTER S ———
g— TINE FUNCTION
PREFIX o DESIGNATOR 1

KEYWORD BRANCH
NON SYNONYHMOUS TIME DESIGNATOR ONLY

—— _ THEN
1<1_ is r TIME /

T VALUE _ ¥
L——m—ﬁ}ag

9

228

6.6.3

Time Prefix
Examples: AFTER <CLOCK> IS -14 HRS 30 MINS,
WHEN < GMT > IS 1130 HRS THEN

The Time Prefix permits a statement to be executed dependent upon a
specific time condition. The Function Designator referenced must be

a Time Function Designator type.

If the Key word "AFTER"” 1is used the statement following the Time Pre-
fix will be executed when the time specified is less than the actual
time reading. If the Key word "WHEN" is used, the statement following
the Time Prefix will be executed when the time specified is equal to

or less than the actual time reading.

This is ggg_a concurrent prefix. The system will delay accordingly

until the Time Prefix is satisfied.

229

VERIFY PREFIX

e e e THEN
r ccmwmuscmm1
TEST
L. | 9

{ VERIFY
PREFIX e
O OIS e SRS RIXmy)
VERIFY !
aran
WITHIN 4§ yALuE
ro—==m po=—=-o [T M
. EXTERNAL COMPARISON §_ —)2
DESIGHATOR v C

Lo a0 g

MUST BE TAKEN IF THE ABBREVIATED DEFAULT
[OPTION OF THE STOP STATEMERT IS USED

ELSE L EXCEPTION ?“"““' AND
2 3 s
THEN
9

—- KEYWORD BRANCH
HON SYNONYMOUS

230

6.6.4

Verify Prefix

Examples: IF (A) = (B) THEN
VERIFY <{SII CHILLDOWN VLV > IS CLOSED THEN

The Verify Prefix cannot be used as a stand alone statement, but may
be used as an optional prefix to any Procedural Statement. The Verify
Prefix provides a conditional transfer capability. The Verify Prefix

has two main options: namely the "IF THEN" and "VERIFY" options.

The "IF THEN" option provides a conditional branching capability based .
upoﬁ comparison testing of internal data. The optional nature of the
statement execution is provided by embedding in the "IF THEN" option
a Relational Formula or Limit Formula for comparison testing. If the
result of the evaluation of the formula is true, the remaining part
of this statement will be executed, If the result of the evaluation
éf the formula is false, the remaining portion of the statement will
not be executed, but the next statement in the written sequence will

be executed.

The "VERIFY" option provides a conditional transfer capability based
upon comparison testing of external data. The Verify option also
uses the Limit Formula or Relational Formula for determining branching

by the same method as the "IF THEN" option.

The "VERIFY" option also provides a negative- comparison testing with
the "ELSE" path. In this instance, if the result of the evaluation
of the formula is false, the Output Exception unit will be executed

next and followed by the rest of the statement. If the result of

the evé]uation of the formula is true, the next statement in the

written sequence will be executed. The "VERIFY" 6ption also provides
231

a time interval -for testing. The result of the time interval test caﬁ
be considered to be logically added with the result of the evaluation
of the formula. If a time interval is specifiedfand the condition of
the comparison test is met before or as the time interval expires the

| result is regarded as true. If the time interval expires and the con-
dition of the comparison test is not met, the result is considered
false. Branching is then done is accordance with the "THEN" or "ELSE"
options as described above. The word "THEN" and the symbol ","
(comma) have the same meaning in the statement, when related to

branching.

232

Examples:

IF (TABLE A) COLUMN 3 ARE BETWEEN 80 AND 100, CLOSE

< LOX VENT VALVE 1> ;

VERIFY < D030-323 > 1S BETWEEN 1670 PSIA AND 1510 PSIA
ELSE DISPLAY EXCEPTION (D030-323 EXCEEDS REDLINE)
TO<CCRT 2> AND TURN ON<C CUTOFF > ;

VERIFY (TABLE A) FUNCTIONS ARE BETWEEN COLUMN 6 AND (TABLE
B) COLUMN 4;

VERIFY (TABLE C) FUNCTIONS ARE OFF;

233

6.7 FORMULAS
These elements include syntactieaﬁ units defining the mathematical

capabilities and comparison testing included in the language.

234

235

: NUMERIC FORMULA

\ REV B

T p—

* "NUKERIC ¥
(J FORMULA)

| [| |
< ;F""_‘"‘"i
QUARTITY)

| . |
-

§ HumBER
| R}
K utm—:mML--1

MUST BE DECLARED a NARE i
AS NUMERIC OR QUANTITY ol e e

M~ mme 1/ 0\
| FORMULA |
_J

- 236

6.7.1 Numeric Formula

Examples: A+B+C/D**3
(ALPHA) * (BETA)
(-18 VOLTS) + (63 VOLTS) **2
- (63*%(10 AMPS))

The Numeric Formuia_a110ws a mathematical operation to be performed
on the right'hand side of an equation. The mathematical symbols and
their meanings are as follows:

MULTIPLICATION DENOTED BY ONE ASTERISK (*).

DIVISION DENOTED BY A SLASH (/).

ADDITION DENOTED BY A PLUS (+).

SUBTRACTION DENOTED BY A MINUS (-).

EXPONENTIATION DENOTED BY TWO ASTERISKS (**).

The following rules will be used in performing mathematical operations:

1. Parenthesis will be used where required to indicate order in

. which calculations are to be performed. Arithmetic operations
within the innermost parenthesis are accomp]ished,firét.

2. MWhen the heirarchy of operations in an expression is not
completely specified by the use of parenthesis, the sequence
reduction is as follows:

(a) First, all exponentiations are performed.
(b) Next, all multiplications and divisions are performed.

(c) Finally, all additions and subtractions are performed.

Within a sequence of consecutive multiplications and/or subtractions
in which the order of the operations is not completely specified by

parenthesis, the meaning is that of a left to right reduction.

237

14 e
“ COMPARISON TEST _ r RELAT!OWALWﬁ

W FORMULA
- =1 L &

| COMPARISON
- TEST

4 77
LiwIT

L2l

238

6.7.2 Comparison Test

The Comparison Test syntax diagram represents a logical grouping of
the Relational Formula and Limit Formula syntax diagrams. Since the
Comparison Test diagram is used in several other diagrams, this type

of grouping results in simpler appearing diagrams.

239

LIMIT FORKMULA

FOR THE IF THEN OPTION

o ———— -3 g‘;;}?’;;-’s/ OF THE VERIFY PREFIX
§ LIMIT FORMULA) NAME B 15 BETWEEN-el
L__mmmﬁ L'ﬂ--‘--—ﬂgzg/ \ /

ARE \ not —/

QUANTITY } AND 4 QUANTITY
1 : HUMBER I- AND 4 NUMBER
INTERNAL INTERNAL

NAWE — anD ———— NAK

240

6.7.3

Limit Formula

Examples: IS BETWEEN 10 VOLTS AND 30 VOLTS
IS NOT BETWEEN (ALPHA) AND (BETA)
(PRESSURE A) IS BETWEEN 14 PéIA AND 20 PSIA
ARE NOT BETWEEN (HI) AND (LO)

The Limit Formula allows a comparison to be made between two Timits.
The comparison may be for either Internal Names or Function Designators.
Function Designators will be written for the statement calling the

Limit Formula and not in the Limit Formula itself. The Internal Name

must be listed as part of the Limit Formula.

Caution: Incompatible data and variables will be the responsibility

of the person preparing the program.

" 241

(61

W RELATIONAL FORKULA

FOR THE [F THEN OPTION

ﬁ OF THE VERIFY PREFIX
él' RELATIONAL IRTERNAL ¢ _ b}
FORMULA ’ NAME | &

—
-

/ EQUAL— TO \

HOT — EQUAL-— TO
GREATER -—— THAR

. %
I 15 LESS — THAN
\ ARE / k GREATER ~— THAN— OR — EQUAL— TO

I

LESS ~— THAN — OR— EQUAL-~— TO

NUMBER
N N TN —lm
i |

HUMBER
PATTERN

="

QUANTITY
—— L —5-25

49

r‘
] 3 INTERHAL

¢ \\ [
r_-_—_
TExT o o TEXT
B

CORSTANT
79

——
N
3¢ { STATE

L4

242

6.7.4

Relational Formula

Examples: (PRESS A) = 10 PSIA
(PRESS A) IS EQUAL TO (PRESS B)
ARE ON |
(PRESS A) IS GREATER THAN 15 PSIA
(BUS READING) IS LESS THAN 14 VOLTS
(BUS READING) IS GREATER THAN OR EQUAL TO 16 VOLTS
(BUS READING) IS LESS THAN OR EQUAL TO 24 VOLTS

The Relational Formula allows for a verification to be made dependent
upon a particular condition or state. Function Designators and Internal
Names may be related to states or various data types. The sense of

the relation may be either equality, greater or less than equality,

.or both. As with the Limit Formula if a Function Designator is being

related then it must be listed from the statement referencing the
Relational Formula and not the Relational Formula itself. The Internal

Name is Tisted in the Relational Formula.

243

6.8

EXCEPTION

The Exception Group is made up of the Output Exception element. The
Output Exception element is used in the Verify Prefix and the CON-

CURRENT STATEMENT.

244

245

mmmmm DISPLAY
r~ QUTPUT 1 -\
| exceerion . PR”‘T-_/ EXCEPTIONS-———-el
o e e e 2 RECORD
1 TEXT
% CONSTANT
L_—-—‘DZ’SJ
DEFAULT TO SYSTEM MESSAGE =
2 r 7od EXTERNAL

l DESIGHATOR .,
USING =— MESSAGES ~ FROM — INTERNAL

NAKE L
[, 1 DEFAULT
TO SYSTEM DEVICE

246

6.8.1 Output Exceptioh

Examples: PRINT EXCEPTIONS USING MESSAGES FROM (MESSAGE LIST) T0
< LINE PRINTER >
DISPLAY EXCEPTIONS
RECORD EXCEPTIONS TO < DISC >

The Output Exception is used to output messages to any recording device
when an error condition occurs. This option allows for the use of
system error messages, if any, and also a default to a standard system

recording device, if any.

If a Tist of messages is used in relation to a group of Function Desig-
nators, then they must correspond exactly in the number of entries.
If an error condition occurs, then an error message will be chosen

from the 1list in a one-to-one correspondence.

The Output Exception unit may be abbreviated when used in combination
with the STOP STATEMENT to effect a Language Processor default condition
in which the computer to engineer communication devices and to prede-
fine the message to be indicated on the device. An example of the
abbreviated form is:

VERIFY < LOX VENT VALVE 2 > IS OFF;

This statement has the same meaning as:

VERIFY <::LOX VENT VALVE 2:> IS OFF ELSE RECORD EXCEPTIONS AND
STOP;

Reference the description of the STOP STATEMENT for more information
on page 85.

247

NUMBER PATTERN
P77
BINARY NUMBER
[. |

IR TS RS SRR

FHexaoEcimaL ¥
™ numeer L 35|
[PATTERN T ——
| . -1 |

rmmmm—-
INTEGER NUMBER
L—as P] .jﬁx

OCTAL NUMBER
L TG YT R WD .2,?;5

BINARY NUMBER
\Reve)

v 0
BINARY NUMBER -
i t B < | >-—; e

W HEXADECIMAL NUMBER

A

C “wexavecmar | ; 1
| numser - X 0 e
| IR) 1
' 2
3
4
5
6
7
8
9
A
B
C
— D
— E
248 L F

6.9 NUMBER REPRESENTATION
These éféments define the basic numeric character sets that are

available to the test writer.

6.9.1 Number Pattern

The syntactical unit Number Pattern defines the types of numbers allowed.

These include Binary, Octal, Decimal, and Hexadecimal.

6.9.2 Binary Number

A Binary Number must begin with the letter "B" and is formed by any

combination of the Numerals "1" and "0".

6.9.3 Hexadecimal Number

A Hexadecimal Number must begin with the Tetter "X" and may be formed
by any combination of the Numerals "0" through "9" and the Letters A,
B, C, b, E, or F.

249

INTEGER NUMBER

AD
[r————— 1 |
’ INTEGER HUMBER 5 % NUMERAL

e e e 3 b e e U

| OCTAL NUMBER

& N

INTEGER

e NUMBER

E—— TR e ek

I Sy A WL 7

250

6.9.4

6.9.5

6.9.6

Integer Number

An Integer Number is any combination of allowed numerals to form a

decimal whole number.

Octal HNumber

An Octal Rumber must begin with the Tetter "T" and may be formed by

any combination of Numerals "0" through "7".

Number

A Humber is a positive or negative Integer Number or fractional number.

A Number may be written as 3.3 or 3 or 0.3 or .83.

251

DIMENSION
NG,

=771

| DIMENSION £

IR £ &

SEE DIMENSION TABLE ON PAGE 200

QUANTITY

N\ [m====1 [=-——=
_____ . NUMBER p———j DIMENSION -
| QUANTITY . | SR
[- e

TIME VALUE f—

I—

(12
STATE CLOSED

FALSE
r 1 OFF
l STATE k
L L o
OPEN
TRUE

252

6.10.1

6.10.2

Engineering Values (Dimensions)

The engineering units available are contained on the referenced page

by the DIMENSION diagram.

Quantity

A Quantity is a number, with a Dimensional identifier attached, which
provides both scaling information to the Language Processor and a

method of error checking the test writerfs use of these quantities.

State
A State represents a boolean expression. The allowable expressions
are ON, OFF, OPEN, CLOSED, TRUE, or FALSE. ON, CLOSED, and TRUE are

represented by a binary "1" and OFF, OPEN, and FALSE are represented
by a binary "0". |

253

TIKE VALUE

% wNonN wRR WO KR GSRAS eeins

INTERRAL
HARE

o | | |
(" .

=" F—" T
z€?{ KUBBER B it — NUMBER SEC WUMBER §._mSEC-
b e\ g b 2\ s / S,) YIS
3(L

254

6.10.3 Time Value

Examples: 3 DAYS
4 HRS 5 MINS 30 SECS
10 MINS 30 SECS
15 MINS _
2 DAYS 20 HRS 10 MINS 22 SECS 15 MSECS
5.6 MSECS
(TIME)

The Time Value allows for numerical representation of DAYS, HRS, MINS,
SECS, and MSECS. The Time Value may be positive or negative. Only
the first entry in the Time Value should be signed. The Time Value

also allows an Internal Name to be used.

255

7.0 CAPABILITY CHART

STATEMENT NAME TYPE| KEYWORD - STATEMENT CAPABILITY

1. ACTIVATE TABLE P ACTIVATE ALLOWS OPERATIONS TO BE PER-
FORMED ON PARTICULAR ROWS IN A
TABLE.

2. APPLY ANALOG P APPLY APPLIES ANALOG VALUES TO THE

SEND SYSTEM UNDER TEST.

3. ASSIGN P ASSIGN | PERFORMS LOGICAL OPERATIONS ON
"STATE" (ON/OFF) INTERNAL PRO-
GRAM DATA.

4. AVERAGE 1 P AVERAGE PROVIDES A CONVENIENT MEANS OF
AVERAGING DATA FROM A SYSTEM
UNDER TEST.

5. BEGIN DATA BANK S BEGIN INITIAL BOUNDARY FOR DESCRIBED

6. BEGIN MACRO ITEMS.

/. BEGIN PROGRAM

8. BEGIN SUBROUTINE

9. COMMENT S $ ALLOWS NON-EXECUTABLE INFOR-
MATION TO BE INSERTED FOR
CLARIFICATION.

10. CONCURRENT P CONCURRENTLY | ALLOWS CONCURRENT PROGRAM EXE-

| CUTION, MONITORING AND RECORDING.

11. DECLARE DATA D DECLARE DEFINES DATA CHARACTERISTICS

12. DECLARE NUMERIC LIST NECESSARY FOR COMPILATION AND

13. DECLARE NUMERIC TABLE ‘1 ENTERS INITIAL DATA VALUES.

14. DECLARE QUANTITY LIST

15. DECLARE QUANTITY TABLE

16. DECLARE STATE LIST

17. DECLARE STATE TABLE

18. DECLARE TEXT LIST

19. DECLARE TEXT TABLE

20. DELAY P DELAY CAUSES A PROGRAM HOLD FOR A
SPECIFIC TIME INCREMENT OR
UNTIL A PARTICULAR EVENT OCCURS.

TYPE

D - DECLARATION STATEMENT
P - PROCEDURAL STATEMENT
S - SYSTEM STATEMENT

256

STATEMENT NAME

KEYWORD

TYPE STATEMENT CAPABILITY,
21. DISABLE INTERRUPT P DISABLE INHIBITS THE EXECUTION OF A
SUBROUTINE ON THE OCCURRENCE
OF A SPECIFIED INTERRUPT.
22. END S END FINAL BOUNDARY FOR GOAL COM-
PONENTS.
23. EXPAND MACRO S EXPAND A COMPILER DIRECTIVE THAT EX-
EXECUTE PANDS THE MACRO AND ALSO PRO-
VIDES CONTROL OVER THE PRINTING
OF THE MACRO DURING COMPILATION.
24. FREE DATA BANK S FREE CANCELS AN ACTIVE DATA BANK
USED BY THE LANGUAGE PROCES-
SOR.
25, GO TO P GOTO PROVIDES FOR UNCONDITIONAL
BRANCHING.
26. INHIBIT TABLE P INHIBIT INHIBITS OPERATIONS ON PAR-
TICULAR ROWS OF A TABLE.
27. ISSUE DIGITAL PATTERN P ISSUE ISSUES A DIGITAL PATTERN TO
THE SYSTEM UNDER TEST.
28. LEAVE S LEAVE ALLOWS AN EXIT FROM GOAL INTO-
A ROUTINE WRITTEN IN ANOTHER
LANGUAGE LOCATED IN A DATA
BANK SUBROUTINE.
29. LET EQUAL P LET PROVIDES MATHEMATICAL OPERA-
' TIONS OF ADDITION, SUBTRACTION,
MULTIPLICATION, DIVISION, AND
EXPONENTIATION.
30. PERFORM PROGRAM P PERFORM CALLS DESCRIBED PROGRAM/SUB-
31. PERFORM SUBROUTINE ROUTINE INTO EXECUTION. UPON
THE ITEM'S TERMINATION, CON-
TROL IS RETURNED TO THE NEXT
STATEMENT AFTER THE PERFORM
STATEMENT.
32, READ P READ MEASURES A PARTICULAR FUNCTION
MEASURE AND SAVES THE RESULT.
33. RECORD DATA P RECORD QUTPUTS DATA TO COMPUTER/ENGI-
: ' DISPLAY NEER COMMUNICATION DEVICES.
PRINT

257

STATEMENT NAME TYPE | KEYWORD STATEMENT CAPABILITY
34. RELEASE CONCURRENT P RELEASE STOPS CYCLIC EXECUTION OF THOSE
ITEMS INITIATED BY A CONCURRENT
STATEMENT .
35. REPEAT P REPEAT ALLOWS ONE OR MORE STATEMENTS
TO BE REPEATED A SPECIFIED
NUMBER OF TIMES.
36. REPLACE S REPLACE A WRITER AID TO ALLOW REPLACE-
‘ MENTS OF NAMES OR ABBREVIATED
CODING.
37. REQUEST KEYBOARD P REQUEST ALLOWS DATA TO BE ENTEREDINTO
A PROGRAM.
38. RESUME S RESUME FINAL BOUNDARY FOR A DATA BANK
SUBROUTINE TO USE ANOTHER
LANGUAGE.
39. SET DISCRETE P SET SENDS A DISCRETE (ON/OFF) COM-
OPEN MAND TC THE SYSTEM UNDER TEST.
CLOSE
TURN ON
TURN OFF
40. SPECIFY S SPECIFY PROVIDES THE DATA TO INTER-
FACE THE TEST PROCEDURE TERMI-
NOLOGY WITH THE SYSTEM UNDER
TEST.
41. STOP P STOP STOPS PROGRAM EXECUTION UNTIL
MANUALLY RESTARTED.
42. TERMINATE P TERMINATE CAUSES TERMINATION OF PROGRAM
OR SUBROUTINE.
43. USE DATA BANK S USE ACTIVATES A DATA BANK FOR USE
BY THE LANGUAGE PROCESSOR.
44, WHEN INTERRUPT P WHEN ACTIVATES AN INTERRUPT AND

INDICATES A SUBROUTINE TO BE
EXECUTED WHEN THE INTERRUPT
OCCURS.

- 258

GOAL KEYWORD/PHRASE INDEX

DIAGRAM

KEYWORD/PHRASE STATEMENT TITLE NO.
Activate = = = = =« = =~ - Activate Table Statement - - - - ~ - 1
After - = =~ = = = = =« - Time PrefiX= = = = = =« w0 =« = = = 80
All= = = = m = = = o e - Disable Interrupt Statement- - - - - 28
Release Concurrent Statement - - - - 63

And = = = = & - .- - Concurrent Statement - - = = = = « - 15
Verify Prefix - = = = = = = = = =« = 83

Expand Macro Statement - - - - - - - 30

Limit Formula - - = = = = = = = - = 44

And Return To =~ = = = = When Interrupt Statement - - - - - - 84
And Save As -~ - -~ - - - Request Keyboard Statement - - - . - 66
Average Statement- - - - - - - - - - 4

Apply = = = = = = = ~ - Apply Analog Statement - - - - - - - 2
Are~ = = = & & - maa Limit Formula- - - = = = - - - - - - 44
Relational Formula - - = -« = = - <~ - 62

As = = = = = 0 = = o 4 - Specify Statement- - - - = - - . - = 71
Assign = = = = = = = = - Assign Statement - - - - - - - - - . 3
Average - - = = = - ~ - Average Statement - - - - - - - - . 4
Begin - = = =« = = - - « Begin Data Bank Statement - - . - - 5
Begin Macro Statement - - - - - - - 6

Begin Program Statement - - - - . - 7

Begin Subroutine Statement - - - - - 8

Between - - = = = = - - Limit Formula - - - - = - = - - & & 44
Characters - =« « = - =« - Declare Data Statement - - - - - - - 17
' Declare Text List Statement . - - - 24

Declare Text Table Statement - - - - 25

Close= = ="~ = = = =~ = - Set Discrete Statement - - - - - - - 70
Closed -~ = = = = = = = = Specify Statement- - - = - - =« - - - 71
Column ~ = = = = = « =« = Internal Name- - - - = - = =« - - - - 39
Columns Titled - - - - - Declare Numeric Table Statement - - 19
Declare Quantity Table Statement - - 2]

Declare State Table Statement- - - - 23

: Declare Text Table Statement - - - - 25

Concurrently - - -~ - - Concurrent Statement - - - - - - - - 15
Critical = = = = = =« = - Perform Subroutine Statement - - - - 56
Data Bank - =« = = =~ = « Begin Data Bank Statement- - - - - - 5
_ End Statement - - = = - = - - - - & 29

Day = = = = = = = = = = Time Value - - - ~ - e e e e e e - 81
Days = = = = = = = =~ - = Time Value - - = = = = = = = = & - - 81
Declare - - - = - - -~ - Declare Data Statement - - - - - - - 17
Declare Numeric List - - Declare Numeric List Statement - - - 18
Declare Quantity List -~ Declare Quantity List Statement- - - 20
Declare Quantity Table - Declare Quantity Table Statement - - 21
Declare State Table- - - Declare State Table Statement - - - 23
Declare Text List - - - Declare Text List Statement- - - - - 24
Delay - = = = = = = = - Delay Statement- - - - = = = - - - - 26
Disable -~ - = = = = - - Disable Interrupt Statement- - - - - 28
Display = = = = = = - - Concurrent Statement - - - - - - - - 15
Record Data Statement- - - - - - - - 61

Else = « = w2 e w = = - Verify Prefix - - = = o 0 = o o = & 83

259

DIAGRAM

KEYWORD/PHRASE 5TAZEMENT 'TITLE NO.
Entries - = = = = = = = = Declare Quantity List Statement ~ - - 20
Declare State List Statement- - - -~ - 22
Declare Text List Statement - -~ - - - 24
Entry From - = = = = - - Request Keyboard Statement- - - - - - 66
Equal To~ = = = = = = « - Assign Statement- - - = = = = = - - - 3
Declare Data Statement- - = = - - - - 17
Let Equal Statement - - - = = = - - - 42
Retlational Formula= - « = = = = - - - 62
Every - - = = - - - - - - Concurrent Statement- - = = -~ = - - - 15
Exceptions- - = = = = - - Output Exception- - - « -« = = = = - - 53
Execute = = = = = « = =« =« Expand Macro Statement- - - - - - - - 30
Expand- = = = = = = = = - Expand Macro Statement- - - - - - - - 30
False = = = = = = = =« = - State = = = = = m &0 m .. - e - - .- 72
For - = = =« = = = = = - - Repeat Statement- - - -« = = = =~ = - - 64
Set Discrete Statement- - - - - - - - 70
Free= = = = = = « = = = = Free Data Bank Statement- - - - - - - 32
Functions = = = = = = =« - External Designator - - = ~ = = - - - 31
Goto~ = = = = =~ = = = = - When Interrupt Statement- - - - - - - 84
GoTo - == === ==« = = Goto Statement- - = = = = = = = ~ - - 34
Greater Than- ~ = = = = = Relational Formula- = = = = = « = -« - 62
Greater Than or Equal To- Relational Formula- - - - - - - - - - 62
Hre = = o e e e m m 2 - - Time Value- = = = = o o 0 - @ - - = - 81
Hrs = = = o 0 0o 2 0 2 - - Time Value- = = - ¢ o o o = o o - - - 81
| T T T Verify Prefix -« =« « - - - = o o - - & 83
Inhibit = = = = = = ~ - - Inhibit Table Statement -~ - - - = - - 37
IsSe = o m = o - - Limit Formula - = = = = = = = = = = & 44
Relational Formula- - - - = = = - - = 62
Time PrefiX =« = = = = = = = = = = & - 80
Issue « = = « m 2 0 - - - Issue Digital Pattern Statement -~ - - 40
Leave - = = ¢ - m - - - - Leave Statement - - = = = - = - & < - 41
Less Than - = = « = = = - Relational Formula- - - - - - - - - 62
Less Than or Equal To - - Relational Formula- - - - - = = = - = 62
let - = = = = m e e e - - Let Equal Statement - - - - - - - - . 42
Load- = = = = = = = = - - Specify Statement - - - - - = - - - . 71
Macro = = = = = = = = = - Begin Macro Statement - - - - - - - - 6
End Statement - = = = =« = - - - 4 - & 29
Measure - - =« = =« « - - - Read Statement - - - = = = = - - - - 60
MseC = = = w2 o m m - . Time Value - = = = = = = = = = = - & 81
Msecs = = = = = = = = = - Time Value - = = = = = = = = = o - - 81
Min - = = o c 0 2 2 2 - Time Value - - = = = = = = = 0 = - - 81
MIns- = = = 2 = = = = - - Time Value « - = o o o = = = = = = - 81
NOot = = = a a4 dwm - Limit Formula - - = = = = = = = = <« & 44
Not Equal To- - - - =~ - - Relational Formula- - = = = = = = - - 62
Number~ -« =« =« = = = - = - Declare Data Statement- - - - - - - - 17
OCCUYS= = = = 2@ = = = - - When Interrupt Statement- - - - - - - 84
Off = - = = = 2o« = = = - State = = = = = = - 0 o 4o - - 4 - - 72
ONe = ¢ 2 m m e e e e - State = = = = = = = = 4 0 - - 2 - - - 72
Open- - = = = = = =« = = = Set Discrete Statement- - - - - - - - 70

State - - - - I I R 72

260 -

DIAGRAM

KEYWORD/PHRASE STATEMENT TITLE NO.
Or Until- - =~ = = = = = - Delay Statement - - = = = = = = = « - 26
Perform - - - - - = - < - Concurrent Statement- - - - - & - « . 15
' - Perform Program Statement - -~ - - - - 55

Perform Subroutine Statement- - - - - 56

Present Yalue Of- - - - « Apply Analog Statement- - - - - - - - 2
Concurrent Statement- - - - o - & - - 15

Issue Digital Pattern Statement - - - 40

Record Data Statement - « = - = - ~ - 61

Set Discrete Statement- - = = - - - - 70

Print - = « = =« = = =« -~ Concurrent Statement- - - = = = = - - 15
Record Data Statement - - - = = - ~ - 61

Program - - = = - - = - - Begin Program Statement - - - - - - - 7
Concurrent Statement- - - - - -=~-=~--15

End Statement - -~ = - = = = = = = & - 29

Quantity - - - = - = - - Declare Data Statement- - -~ - = - ~ = 17
Read—- = - = = = =« = = =« = Read Statement- -« = = = = = = = -« - 60
Readings Of - - - - - -~ = Average Statement - - - = = = - - « - 4
Record - - =~ - - = = = - Concurrent Statement- - - ~ = = = = = 15
Release - = = = ~ = = - = Release Concurrent Statement- - - - - 63
Repeat- - - - - ~ = - - - Repeat Statement- - = = = = = = = ~ - 64
Replace - - - = = - = =~ = Replace Statement - - - - = - - - = - 65
Request - - = = = =~ - - = Request Keyboard Statement~ - - - - - 66
Resume~ -~ - = = = = = = = Resume Statement- = « = = = = = « - - 67
Revision- = = = = = = - = Revision Label- - = = = = = = = =« = = 68
Row - - -~ - = = = = = - = Activate Table Statement- - - - - - - 1
Inhibit Table Statement - - - = - = = 37

Rows And- - = = = = =« - - Declare Numeric Table Statement - - - 19
Declare Quantity Table Statement- - - 21

Declare State Table Statement - - - - 23

Declare Text Table Statement- - - - - 25

SeC - = =~ = = = = .- .- Time Value~ - - = = = = = = = = =« - ~ 81
SeCs= = = = = = o =~ = = = Time Value- = = = = = = = = = = - -« 81
Send- = = = = = = = = = = Apply Analog Statement- - - - - - - - 2
Sensor- =« = =« = =~ ~ = - - Specify Statement -~ - = = =« =~ = - - - 71
Set = = = = = a - - -~ Set Discrete Statement- - - = - = = - 70
Specify - = = = = - =~ "=~ - Specify Statement - - - == ~ = - - ~ 71
State - - = - = = =« = = - Declare Data Statement- - - ~ = - - - 17
Step- = - =~ = = = = = = = Step Number - - = = =~ = = = = = =« = « 73
Stop and Indicate Re- Stop Statement- - - = = = = ~ = = - - 74

start Labels -

Subroutine~ - - = - = ~ - Begin Subroutine Statement- - - - - - 8
End Statement - - = =~ = = = =« = - - - 29

Perform Subroutine Statement- - - - -~ 56

System- - = = =~ - - - - - Specify Statement - -~ - - = = =~ - - - 71
Terminate - - - - - - - - Terminate Statement - - - - - - - - - 78
Text= -~ = = = =« = = = = = Declare Data Statement- - - - = = = =~ 17
Leave Statement - - ~ = - = - = = = - 41

Perform Subroutine Statement- - - - - 56

Record Data Statement - - = = = - = = 61

Request Keyboard Statement- - -~ - - - 66

DIAGRAM

KEYWORD/PHRASE STATEMENT TITLE NO.
Then= = = = = = = = = = = Verify Prefix - - = o o = 0 0 4 4 - - 83
. Time Prefix - = = = - - - N 80
Through = = = = = = = - - Repeat Statement- - = = = « = = = ~ - 64
Times = = = = = = = = = = Repeat Statement- - = = = = = - - ~ - 64
To=- = === = = = = = = = Apply Analog Statement- - - - = = - - 2
Concurrent Statement- - - - - = - - - 15

Issue Digital Pattern Statement - - - 40

Output Exception- - = = = = =« = « =« -~ 53

Record Data Statement -~ - ~ - - - - - 61

Set Discrete Statement- - = =« = - - - 71

Trug= = = = = = = = = = = State = = = = = = = = = = = &« - -« 72
Turn Off= = = = = = = = =~ Set Discrete Statement- - - - - - - - 70
TurnOn - - = = -~ = = = =~ Set Discrete Statement~ - - - - - - - 70
Type= == = = = =~ = = = = Specify Statement - - - = -« = = - - - 71
Useg =~ = = = = = = = - - - Use Data Bank Statement - - - - - - - 82
Using = = = = = = = = = - Specify Statement - - - = ~ = = - - - 71
Using Messages From - - - Qutput Exception- - - = = = = - - - - 53
Verify - - - -~ =~ -~ Concurrent Statement- = - -« ~ - - - - 15
Verify Prefix - = =~ = = = = = = = - - 83

Wait- = = = = = = = = = = Delay Statement - = = = = « = = = - - 26
When- = = = = = = =« = = = Time Prefix - = = = = = =« = w = = - 80
When Interrupt- =~ = - -~ - When Interrupt Statement- - - - - - - 84
With- - = = = = = = = = = Declare Numeric List Statement- - - - 18
Declare Quantity List Statement - - - 20

Declare Quantity Table Statement- - - 21

Declare State List Statement- - - - - 22

* Declare Text List Statement - - - - - 24

Declare Text Table Statement- - - - - 25

Replace Statement - - - - - D 65

With A Maximum of - ~ - - Declare Data Statement- - - -~ - - - - i7
Declare Text Table Statement- - - - - 25.

With Entries- = = = = - ~ Declare Numeric List Statement- - - - 18
Declare Quantity Table Statement- - - 21

Declare State Table Statement - - - - 23

. Declare Text Table Statement- - - - - 25
Within- - - = - - - - - Verify Prefix - = = = = = « = = = = - 83

1262

7.2 GOAL STATEMENT INDEX

DIAGRAM

NO. GOAL STATEMENT NAME TYPE | PAGE} NUMBER KEYWORD/PHRASE
1. ACTIVATE TABLE P | 121 1. ACTIVATE
2. APPLY ANALOGG P 47 2. APPLY/SEND
3. ASSIGN P 93 3. ASSIGN
4. AVERAGE P 63 4. AVERAGE
5. BEGIN DATA BANK s {129 5. BEGIN DATA BANK
6. BEGIN MACRO s | 135 6. BEGIN MACRO
7. BEGIN PROGRAM S | 131 7. BEGIN PROGRAM
8. BEGIN SUBROUTINE S | 133 8. BEGIN SUBROUTINE
g. COMMENT S | 155 13. $
10. CONCURRENT P 99 15. CONCURRENTLY/EVERY/
PERFORM/DISPLAY/VERIFY
11. DECLARE DATA D 11 17. DECLARE DATA
12. DECLARE NUMERIC LIST D 15 18. DECLARE NUMERIC LIST
13. DECLARE NUMERIC TABLE D 27 19. DECLARE NUMERIC TABLE
14. DECLARE QUANTITY LIST D 17 20, DECLARE QUANTITY LIST
15, DECLARE QUANTITY TABLE D 31 21. DECLARE QUANTITY TABLE
16. DECLARE STATE LIST D 19 22. DECLARE STATE LIST
17. DECLARE STATE TABLE D 35 23. DECLARE STATE TABLE
18. DECLARE TEXT LIST D 21 24. DECLARE TEXT LIST
19. DECLARE TEXT TABLE D 39 25. DECLARE TEXT TABLE
20. DELAY P 75 26, DELAY
21. DISABLE INTERRUPT P} 117 28. DISABLE
22. END S | 137 29. END
23. EXPAND MACRO S | 157 30. EXPAND/EXECUTE
24. FREE DATA BANK S | 149 32. FREE
25. GOTO P 79 34. GO TO
26. INHIBIT TABLE P | 125 37. INHIBIT
27. ISSUE DIGITAL PATTERN P 51 40. ISSUE
- 28. LEAVE S | 139 41, LEAVE
29. LET EQUAL P 95 42. LET _
30. PERFORM PROGRAM P { 105 55. PERFORM PROGRAM
31. PERFORM SUBROUTINE. Pl 109 56. PERFORM SUBROUTINE
32. READ : P 67 60. READ/MEASURE
33. RECORD DATA , P 59 61. RECORD
34, RELEASE CONCURRENT P | 103 63. RELEASE
35. REPEAT P 81 64. REPEAT
36. REPLACE P I 161 65. REPLACE
37. REQUEST KEYBOARD P. 71 66. REQUEST
38. RESUME S| 143 67. RESUME
39. SET DISCRETE P 55 70. SET/OPEN/CLOSE/
TURN ON/TURN OFF,
40. SPECIFY S 1 151 71. SPECIFY
41. STOP Pi- 85 74. STop
42. TERMINATE - P 89 78. TERMINATE
43. USE DATA BANK S| 147 82. USE
44, WHEN INTERRUPT Pl 113 84, WHEN/OCCURS®

TYPE: D- DECLARATION STATEMENT, P- PROCEDURAL STATEMENT, S- SYSTEM STATEMENT

263 .

7.3 GOAL ELEMENTS INDEX

NUMBER

WOONOUTHWHN -~

NAME

Binary Number
Character

Character String

Column Name
Comparison Test
Data Bank Name
Dimension
External Designator . .
Function Designator .
Hexadecimal Number .
Index Name
Integer Number
Internal Name
Letter « . ..
Limit Formula
List Name « « . .
Macro Label
Name « « o ¢ ¢ ¢ &
Number e e e e
Number Pattern
Numeral « . « o « .
Numeric Formula
Octal Number
Output Exception
Parameter + . . .
Procedural Statement Prefix
Program Name
Quantity
Relational Formula
Revision Label
Row Designator
State v e e e
Step Number
Subroutine Name
Symbol
Table Name
Text Constant
Time Prefix

Time Value .,

Verify Prefix

264

GROUP
NUMBER

POO~N~OORUIBN—TPORNOLWW & PN~

e

—
DO Rt HAOOWOIN OO

—d

DIAGRAM
NUMBER

PAGE
NUMBER

249
205
209
215
239
217
253
213
211
249
217
251
221
205
241
217
223
215
251
249
207
237
251
247
217
225
219
253
243
223
213
253
227
219
207
219
209
229
255
231

7.4 FEEDBACK LETTERS VERSUS DIAGRAM CHART

LETTER PROPOSED VALUE DIAGRAM NAME

A Dec]are Data Statement

B Declare Data Statement

C Record Data Statement
Request Data Statement

D Activate Table Statement
Inhibit Table Statement

E Apply Analog Statement
Issue Digital Pattern Statement
Set Discrete Statement

F Leave Statement
Perform Subroutine Statement

G Release Concurrent Statement

H Stop Statement

I Disable Interrupt Statement

J Begin Macro Statement
Expand Macro Statement

K Begin Subroutine Statement

L Free Data Bank Statement
Use Data Bank Statement

M Specify Statement

N Specify Statement

P Character String.

R Function Designator

S External Designator

T Name

W Macro Label

Y Revision Label

265

FEEDBACK LETTERS VERSUS DIAGRAM CHART (CONTINUED)

LETTER PROPOSED VALUE DIAGRAM NAME
AB Step Number
AC Numeric Formula
AD Integer Number
AE Binary Number
AF Octal Number
AG Hexadecimal Number

266

7.5 INBEX OF SYNTAX DIAGRAMS

NASA/PAFB APR/73

DIAGRAM _ i DIAGRAM ,

NO. DIAGRAM NAME PAGEE NO. DIAGRAM NAME PAGE
1. |Activate Table Statement 1 4 39. |Internal Name 22
2. |Apply Amalog Statement 2 # 40. Issue Digital Pattern 23
3. |Assign Statement 3 ¢ Statement
4, 1Average Statement 3 Leave Statement 24
5. |Beginm Data Bank Statement 4 1 Let Equal Statement 24
6. |Begin Macro Statement 4 Letter 25
7. {Begim Program Statement 5 1 Limit Formula 25
8. {Begin Subroutine Statement 5§ List Name 26
9, |Binary Humber 5 Macro Label 26

10. |{Character 6 Name 26

11. |{Character String 6 Number 26

12. {Column Name 6 Number Pattern 27

13. |Comment Statement 6 | Numeral 27

14. |Comparison Test 6 & Numeric Formula 27

15. (Concurrent Statement 7 Octal Number 28

16. |Data Bank Name 7 Qutput Exception 28
17. |Declare Data Statement 8 Parameter 28

18. |Declare Humeric List 9 Perform Program Statement 29

Statement b Perform Subroutine Statement | 29

19. iDeciare Numeric Table 10 H Procedural Statement Prefix | .30

Statement : Program Name 30
20. |Decltare Quantity List 11 Quantity 30
Statement Read Statement 30
21. |Declare Quantity Table 12 § Record Data Statement 31
Statement Relational Formula 32
22. |Declare State List 13 ¢ Release Concurrent Statement | 33
Statement B Repeat Statement 33
23. |Declare State Table 14 ¢ Replace Statement 33
Statement ‘ Request Keyboard Statement 32
24. |Declare Text List 15 Resume Statement 35
Statement Revision Label 35
25. Declare Text Table 16 Row Designator 35
Statement Set Discrete Statement 36

26. |Delay Statement 17 Specify Statement 37
27. |Dimension 17 State , 37
28. |Disable Interrupt 17 Step Number 38

Statement ; Stop Statement 38

29. |End Statement 18 | Subroutine Name 38
30. |Expand Macro Statement 18 Symbol | 39
31. |External Designator 18 Table Name 39
32. |[Free Data Bank Statement 19 Terminate Statement 40
33. |Function Designator 19 Text Constant 40
34. |Goto Statement 20 Time Prefix 40
35. |Hexadecimal Number 20 Time Value 41

. 36. {Index Name 20 1 Use Data Bank Statement a4y

37. {Inhibit Table Statement 21 U Verify Prefix 42

38. |Integer Number 21 § When Interrupt Statement 43
267

