44

N91-28198

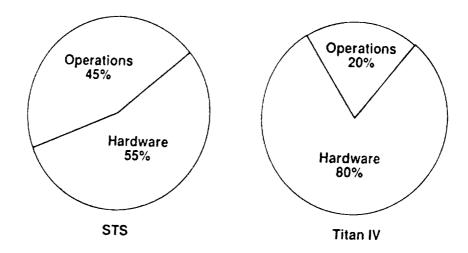
SPACE TRANSPORTATION F. ROPULSION TECHNOLOGY SYMPOSIUM

OPERATIONALLY EFFICIENT PROPULSION SYSTEM STUDY (OEPPS)

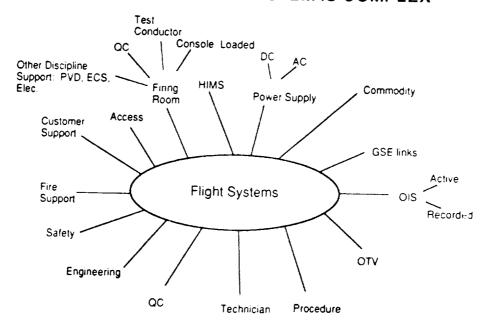
The Pennsylvania State University
University Park, PA
25 - 29 June 1990

OPERATIONALLY EFFICIENT PROPULSION SYSTEM STUDY (OEPSS)

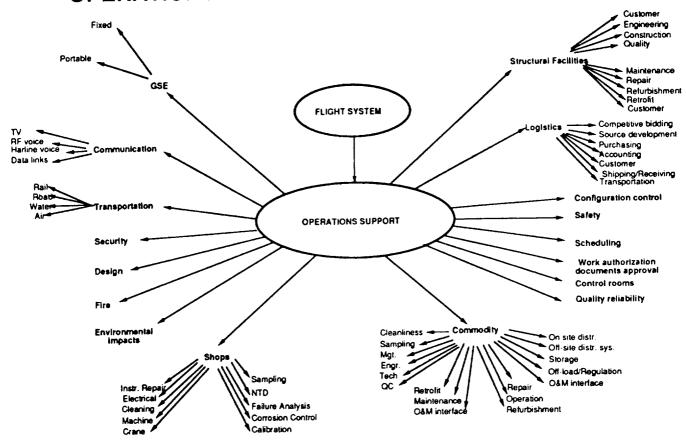
NAS 10-11568


April 1989 - April 1990

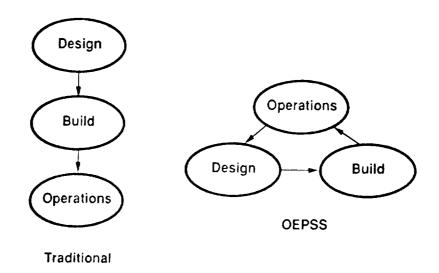
G.S. Wong, G.S. Waldrop, R.J. Byrd, J.M. Ziese



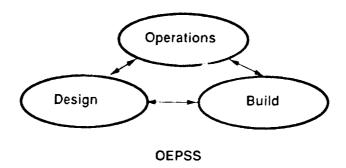
LAUNCH OPERATIONS COST PER FLIGHT


% of Total Recurring Cost

OPERATIONS SUPPORT SYSTEM IS COMPLEX


OPERATIONS SUPPORT STRUCTURE IS COMPLEX

OPERATIONS PROBLEMS RESULTS IN HIGH COST


- Operations problems largely ignored
- Operations is a major cost driver
- Operations must play interactive role with propulsion system design

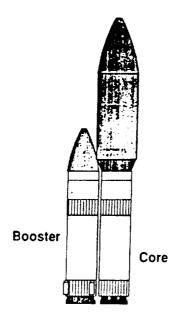
OPERATIONS AND DESIGN MUST BE INTERACTIVE

TOTAL QUALITY MANAGEMENT (TQM) FOR OPERATIONS

Total Propulsion System

OEPSS IDENTIFIES OPERATIONS PROBLEMS

Causes and Effects


No.		No.	
1	Closed aft compartments	14	Ordnance Operations
2	Hydraulic system (valve actuators and TVC)	15	Retractable T-O umbilical carrier plates
3	Ocean recovery/refurbishment	16	Pressurization system
4	Multiple propellants	17	Inert gas purge
5	Hypergolic propellants (safety)	18	Excessive interfaces
6	Accessibility	19	Helium spin start
7	Sophisticated heat shielding	20	Conditioning geysering (LO ₂ tank forward)
8	Excessive components/subsystems	21	Preconditioning system
9	Lack hardware integration	22	Expensive helium usage - helium
10	Separate OMS/RCS	23	Lack hardware commonality
11	Pneumatic system (valve actuators)	24	Propellant contamination
12	Gimbal system	25	Side-mounted booster vehicles (multiple
13	High maintenance turbopumps		stage propulsion systems)

CURRENT OPERATIONS IS SERIAL, TIME CONSUMING AND MANPOWER INTENSIVE

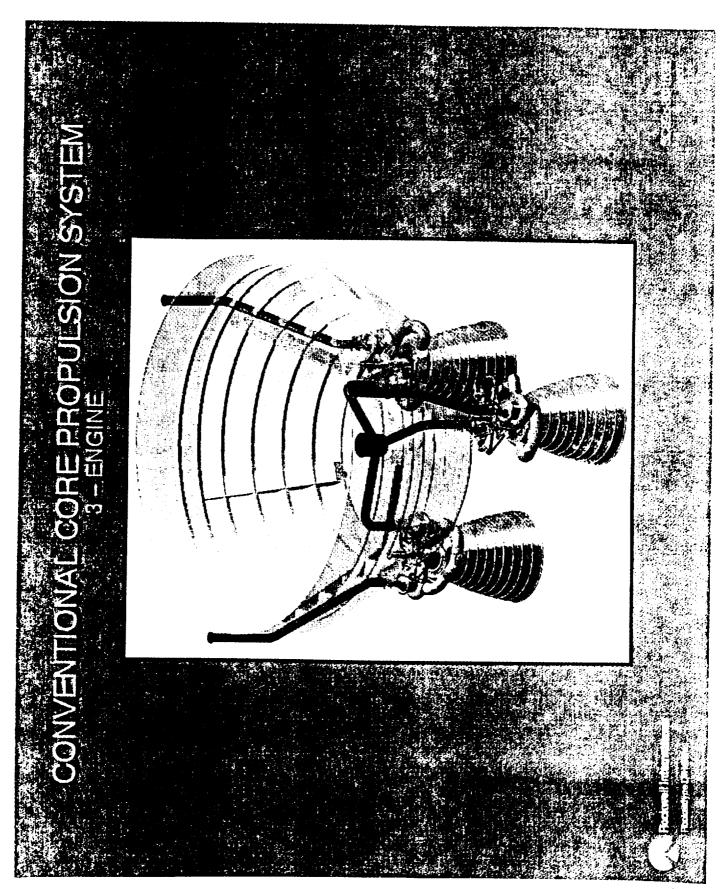
- Some major operations problems
 - Closed boat-tail compartment
 - Hydraulic and gimbaling systems
 - Multiple propellants/commodities (LO₂, LH₂, hypergols, He, N₂, freon, etc)
 - Excessive components and interfaces
- Reduce operations problems by integrating engine components and subsystems
 - Integrated propellant feed and engine system
 - Integrated engine supports systems
 - Helium
 - Pressurization
 - Control avionics
 - Common O₂/H₂ systems

 - MPSOMS/RCS
 - Fuel cells
 - ECLSS

BASELINE ALS VEHICLE

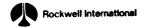
Payload 120,000 lbs (LEO)GLOW 3,500,000 lbs

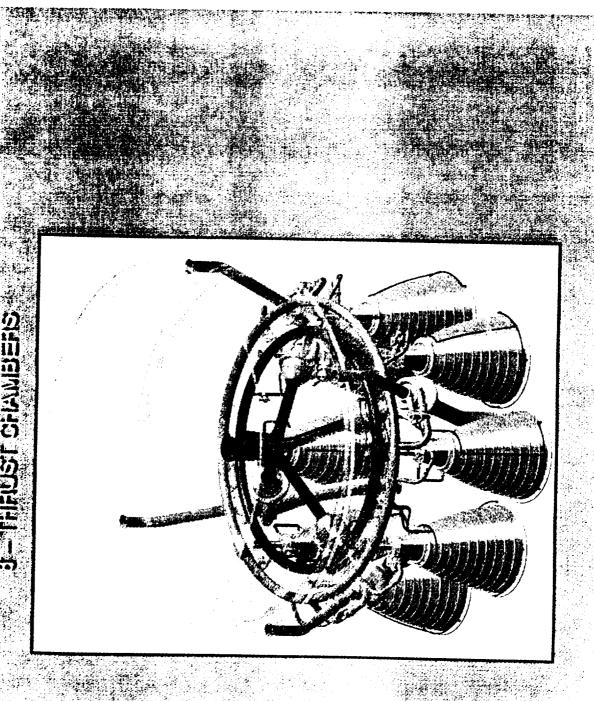
• Thrust/weight 1.30


Booster vehicle
Core vehicle
150' x 30' dia.
280' x 30' dia.

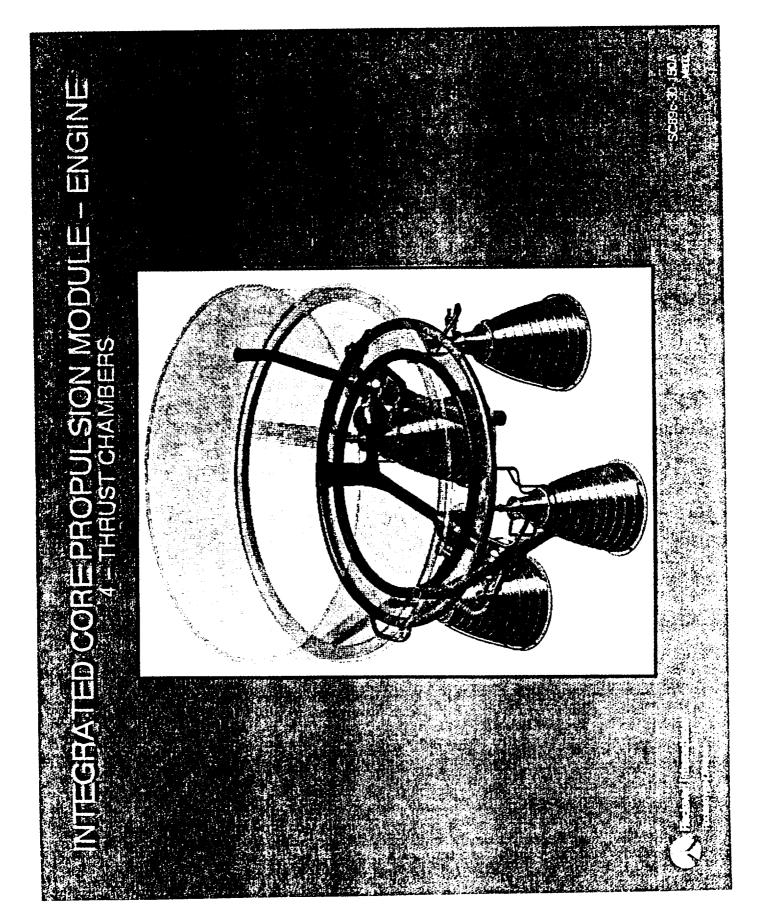
Booster engines 7Core engines 3

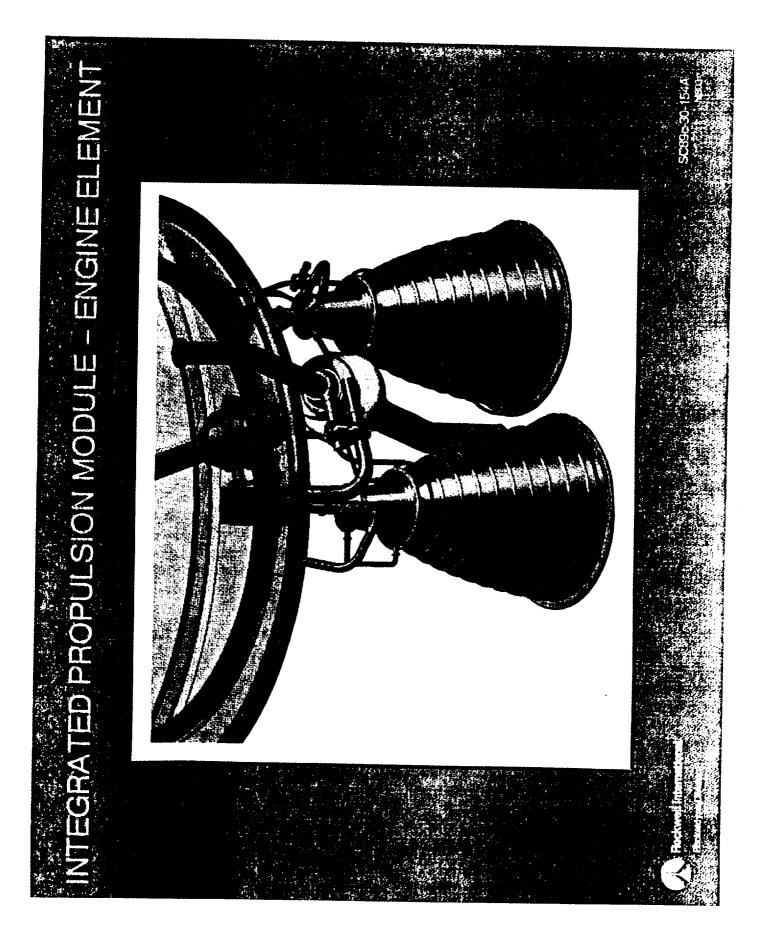
• Engine thrust (vac) 580,000 lbs (STME)

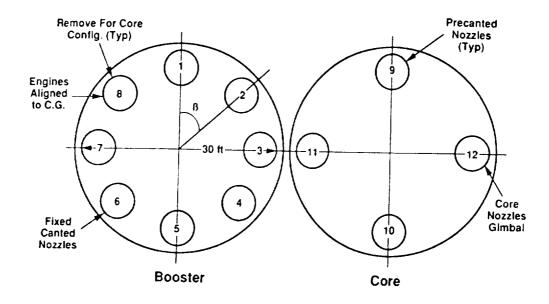

ORIGINAL PAGE IS OF POOR QUALITY

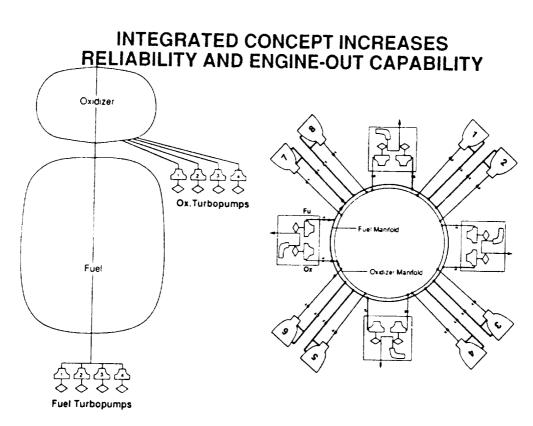


ORIGINAL PAGE IS OF POOR QUALITY


ALS INTEGRATED BOOSTER PROPULSION MODULE


- Moved center engine to perimeter
 - Eliminate potential pogo problem
 - Achieves accessibility and commonality
- Eliminated components and interfaces
- Integrated He supply system
- Integrated pressurization system
- Integrated control/avionics


INTEGRATED PROPULSION MODULE DESIGN INCREASES OPERATIONS EFFICIENCY


- Single He-pressurization system
- Single LOX pressurization system (heat exchanger)
- Single control system
- No flexible propellant lines
- No gimbal actuators
- Torus propellant manifold allows 50% reduction of
 - Propellant inlet lines
 - Turbopumps
 - Gas generators
- Torus manifold provides "engine-out" capability
 - Thrust chamber-out
 - Turbopump-out

INTEGRATED PROPULSION MODULE MAXIMIZES ROBUSTNESS AND COMMONALITY

- Booster utilizes non-gimbaling thrust chambers: 8 T/C's
- Core provides TVC with gimbaled thrust chambers: 4 T/C's
- Normal engine operation at 85% nominal thrust
- Engine operates at 100% thrust with "engine-out" (1-T/C, 1-T/P)
- Outer thrust chamber arrangement maximizes maintainability
- Booster-core configuration achieves maximum commonality
 - Identical module thrust structure
 - Identical feedlines and valves
 - Identical thrust chambers
 - Identical turbopumps

8/4 BOOSTER-CORE CONFIGURATION ACHIEVES MAXIMUM COMMONALITY

INTEGRATED PROPULSION MODULE "COMPONENT OUT" CAPABILITY

• Thrust chamber-out capability

Thrust chamber

85% → 100% Nom. Oper.

• Turbopumps

90%——→ 97% Nom. Oper.

• Turbopump out-capability

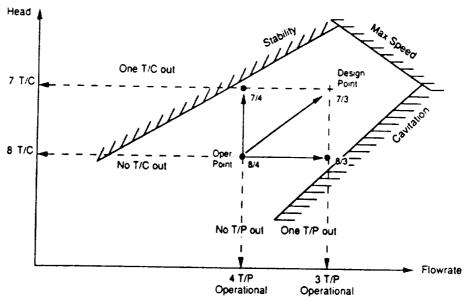
Turbopumps

90% — → 93% Nom. Oper.

Thrust chamber

85%

INTEGRATED PROPULSION MODULE COMPONENT-OUT CAPABILITY


Engine Operation	Thrust Chamber (T/C) % Rated Thrust	Turbopumps (T/P) % Rated Speed
Nominal	85	90
T/C - Out	100	97
T/P - Out	85	93
T/C and T/P-Out	100	100

ROBUST TURBOPUMP DESIGN

- Lower design speed
- Operating margin

Booster	7-engine (7-T/P)	8-thrust chamber (4-T/P)		
Dooster	Des. RPM (100%)	Des. RPM (100%) Oper. RPI (90%)		
LH2-Turbopump	26,000	18,600	16,700	
LO2-Turbopump	10,000	7,100	6,400	

TURBOPUMP OPERATING MAP Integrated Propulsion System

SEPARATE ENGINES VS. INTEGRATED SYSTEM

	Separate Engines	Integrated System
Control Systems		1
He supply system		2
Heat exchanger		2
LOX turbopump		
• LH ₂ -turbopump		
Gas generator		
Thrust chamber		

BOOSTER PROPULSION MODULE HARDWARE COMPARISON Separate Engines vs. Integrated System

•		
	Separate Engines	Integrated System (Static)
Engine Elements	No. of Components	No. of Components
Thrust chamber: MCC Injector Nozzle Igniter	7 7 7	8 8 8
Oxidizer turbopump Fuel turbopump Gas generator Heat Exchanger Start System	7 7 7 7 7	4 4 4 2 1
PCA Controller (avionics) Gimbal bearing Gimbal actuator	7 7 7 14	1 1 0 0
Propellant lines Flexible inlet lines Fixed inlet lines Main valve/actuator Prevalves Crossover duct/lines HP T/P discharge lines Ring manifold	14 14 0 14 14 7 0	4 0 8 24 0 0 8 2
HP T/C inlet lines Miscellaneous Center engine mount Total	0 7 1 169	8 8 0

Table 1

BOOSTER PROPULSION MODULE RELIABILITY

Separate Engines vs. Integrated System

	Component	Separate (ngines	Integrated system	
Engine Elements*	Reliability	No. of Components	Subystem Reliability	No. of Components	Subsystem Reliability
Thrust chamber assy T/C_ISO valve, ox	0 99978	7	0 99846	8	0 99824
T/C ISO valve, fuel	0 99996 0 99996	0		8 8	0 99968 0 99968
Oxidizer turbopump Fuel turbopump	0 99986	7	D 99902	4	0 99944
MOV	0 99972 0 99996	7 7	0 99804 0 99972	4	0 99888 0 99984
MFV Gas generator	0 99996 0 99983	7 7	0 99972 0 99881	4	0.99984
PCA Controller	0 99999 0 99996	7 7	0 99993 0 99972	1	0 99932 0 99999
Gimbal system Heat exchanger	0 99999 0 99989	7	0 99993 0 99923	0 2	0 99996 0 99978
Propellant lines	0 99999	14	0 99986	4	0 99996
Inlet line, fixed Prevalve, oxid	0 99980 0 99980	7	0 99860 0 99860	0 4	0 99920
Prevatve, fuel	0 99996 0 99996	7 7	0 99972 0 99972	0	
Crossover duct HP T/P discharge lines	0 99980 0 99999	7 D	0 99860	0	
Ring manifold HP T/C inlet lines	0 99991 0 99999	0		8 2 8	0.99992 0.99982
Overall reliability		0.98775		0 99	0 99992

*STME Components

Table 2

BOOSTER PROPULSION MODULE SYSTEM WEIGHT Separate Engines vs. Integrated System

Engine Elements	Unit Weight Separate Engines		Integrated System		
	Lbs	No. of Components	Weight Lbs	No. of Components	Weight Lbs
Thrust chamber:					
MCC Injector Nozzle Igniter	613 364 2088 31	7 7 7 7	4291 2548 14616 217	8 8 8	4904 2912 16704
Oxidizer turbopump Fuel turbopump Gas generator Heat Exchanger Start System	1726 1421 121 101 35	7 7 7 7 7	12082 9947 847 707 245	4 4 4 2 2	248 9664 (1 7960 (1 484 (2 404 (3
PCA Controller (avionics) Gimbal bearing Gimbal actuator	82 20 158 190	7 7 7 7	574 140 1106 2660	1 1 0 0	70 3 82 20 0
Propellant lines Flexible inlet lines Fused inlet lines Main valve actuator Prevalve Crossover duct/lines HP T/P discharge lines Ring manifold HP T/C inlet lines	734 668 144 75 214 360 3750 300	14 (1186) 14 0 14 14 14 7 0 0	16600 10276 0 2016 1050 1498 0 0	4 (1587) 0 8 24 0 0 8 2 8	6348 0 5344 3456 0 0 2880 7500 2400
Miscellaneous Center engine mount	585 1826	7	4095 1826	8 0	4680 0
Total Weight			87,340		76,058

(1) Factor of 1.4 (2) Factor of 1.5 (3) Factor of 2.0

INTEGRATED PROPULSION MODULE IS RELIABLE AND LOW COST

Factor	Separate	Integrated
Higher reliability T/C and T/P out	0.988* 0**	0.993 * 0.999 **
 Lower engine (T/C) cost, \$M Less number of parts Lower potential weight, lbs. Lower operations cost 	2.67 169 87.340 1	1.83 111 76,058 1/3

^{*} No engine-out capability

INTEGRATED DESIGN ADDRESSES OPERATIONS PROBLEMS DIRECTLY

No. 14 Ordnance Operations 1 Closed aft compartments Retractable T-O umbilical carrier plates 2 Hydraulic system (valve actuators and TVC) Pressurization system 3 Ocean recovery/refurbishment 17 Ineri gas purge 4 Multiple propellants (18) Excessive interfaces Hypergolic propellants (safety) 19 Helium spin start 6 Accessibility 20 Conditioning/geysering (LO₂ tank forward (7) Sophisticated heat shielding Preconditioning system B Excessive components/subsystems Expensive helium usage - helium 9 Lack hardware integration Lack hardware commonality **2**3 10 Separate OMS/RCS Propellant contamination (1) Pneumatic system (valve actuators) Side-mounted booster vehicles (multiple (2) Gimbal system stage propulsion systems) High maintenance turbopumps

^{**} With T/C and T/P - out capability

INTEGRATED PROPULSION MODULE IS FLEXIBLE

- "Integrated" propulsion module is a single engine
 - Meets wide range of thrust (1,00,000 4,000,000 Klbs) by adding or eliminating components
- "Integrated" propulsion module is operationally efficient
 - Simpler
 - More reliable
 - Greater engine-out capability
 - More robust
 - More operable (operationally efficient)
 - Lower cost
 - Lower weight

OEPSS CONCLUSION

- Operations starts at design concept (TQM)
- Integrated design operationally efficient
 - Substantially higher reliability and lower cost
 - New technology not required (enabling)
 - High flight rates and routine access to space
- Other innovative propulsion concepts possible

PROPULSION SYSTEMS OPTIONS-CURRENT SYSTEMS

PRESENTATION 1.2.1

EXPENDABLE LAUNCH VEHICLE PROPULSION