
Space Shuttle Usage of z/OS

Did you know that the software running on the Shuttle’s main computers is
developed, built and tested on z/OS? Come to this session to learn about the
languages, preprocessors, and compilers (custom and COTS) used to generate
and test the Shuttle’s Primary Avionics Software System (PASS). It will also
show the hardware and unique access methods used to attach the Shuttle’s
onboard computers to the z900 to create a simulation environment for
development and testing.

Copyright © 2007 by United Space Alliance, LLC. These materials are sponsored by the National Aeronautics and Space
Administration under Contract NAS9-20000 and Contract NNJ06VA01C. The U.S. Government retains a paid-up, nonexclusive,
irrevocable worldwide license in such materials to reproduce, prepare, derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the U.S. Government. All other rights are reserved by the copyright owner.

Space Shuttle Usage of z/OS

Jan Green
United Space Alliance, LLC

Jan.Green@usa-spaceops.com

March 5, 2009
Session 2819

Page 1Session 8121
SHARE 2007, San Diego

• Mission, Products, and Customers

• Facility Overview

• Shuttle Data Processing System

• Languages and Compilers

• Application Tools

• Shuttle Flight Software Simulator

• Software Development and Build Tools

• Fun Facts and Acronyms

Contents

Page 2Session 8121
SHARE 2007, San Diego

United Space Alliance
Flight Software

To be the world-class software leader for human space flight
providing software that is safe, on-time, error free, and

cost-effective

Our Mission

Page 3Session 8121
SHARE 2007, San Diego

Products and Customers

Shuttle
Missions

Crew & Flight
Control
Training

Mission Support

Pr
od

uc
ts

Applications/
Support Tools

Modeling &
Simulation

Human-Rated
Software Validation

Systems Engineering

Applications / Support
Development

Application Development

Ground Flight Control
MCC / KSC

Computing Platforms

JAVA
HTML
HAL/S

Fortran
Assembler

C/C++
PL/1
IMS
Oracle
SQL

Flight / Onboard
Products

Mission Specific
Data Products

Flight
Reconfiguration

Onboard &
Ground Products

Ground Products

Integrated HW/SW
Testing

PASS and BFS
GPC Flight Software

Server

LANMainframe

Page 4Session 8121
SHARE 2007, San Diego

Facility Overview
z/900

Model 2064-102
78 MSUs (capped at 65 MSUs)

2 CPs, 1 IFL
16 Gig Memory

3.6 Terabytes DASD

Development

LPAR 1
LPAR 2

Testing

LPAR 3
LPAR 4

System Build

LPAR 6
LPAR 7

LPAR 5

Production

z/OS V1.7

Page 5Session 8121
SHARE 2007, San Diego

Major Products:
• JES3 (each LPAR is a standalone Global)
• IMS (vehicle and payload configuration information)
• Compilers (PL/I for MVS&VM, C/C++ V1.7, Assembler, VS FORTRAN 2.6, REXX

V1.4)
• RACF
• OEM

– Oracle (configuration management of all source changes)
– CA Suite (Ops, TMS, etc)
– EJES
– Astute
– Abendaid / Fileaid

Facility Overview

Page 6Session 8121
SHARE 2007, San Diego

Shuttle Data Processing System

Page 7Session 8121
SHARE 2007, San Diego

Shuttle Data Processing System
• AP-101S General Purpose Computers (GPC)

– Radiation tolerant processor for real-time applications
– Architecture evolved from the IBM System/360
– Same processor family used in several military aircraft (B-1B,…)
– Approximately 1.3 MIPS
– CPU Oscillator 40 MHz
– Memory – Static RAM CMOS technology

• 262,144 FULLWORDS (32 BITS) = 1 MB
• Access/Cycle Time = 250 nanoseconds

• Mass Memory
– Solid State Memory contains several copies of executables
– Avionics overlay software for each flight phase is loaded from here

Page 8Session 8121
SHARE 2007, San Diego

Shuttle Data Processing System

• Serial Data Buses
– 24 Data Buses - 1 MHZ Serial Channels
– Unique bus using architecture that evolved into MIL-STD-1553
– Any bus has a single GPC commander, all GPCs can listen on most buses

• Multiplexers/Demultiplexers (MDM)
– Provide serial, analog, or discrete interface between end devices and

serial data bus

• Multifunction Electronic Display Subsystem (MEDS)
– Crew GPC display and keyboard interface

• Completely fly-by-wire system
– Crew flight controls all electrically connected via GPCs
– No direct mechanical or hydraulic linkages (except landing gear)

Page 9Session 8121
SHARE 2007, San Diego

Shuttle Data Processing System

CPU 1

IOP 1

CPU 2 CPU 3 CPU 4 CPU 5

IOP 2 IOP 3 IOP 4 IOP 5

Intercomputer (5)
Mass Memory (2)

PCMMU I/F (5);
1 Dedicated per GPC

Payload Operation (2)

Launch Function (2)

Display System (4)

Flight Critical Sensor and Control (8)

Crew
Control
Panels

Discrete Inputs and Outputs Among IOPs, Control Panels and Mass Memories

GNC Sensors and Effectors
- Engine Controllers
- RCS Jets
- Hand Controllers
- IMUs
- Navigation Sensors
- MEDS IDPs (Dedicated Displays)
- Etc.

Mass
Memory

Units

Keyboard
Inputs,

Displays

PCMMU
Telemetry

Instrumentation
Data

Payload
Interface,
Payload Bay
Doors

Launch Data Bus,
SRB MDMs (D/L Data),
RMS

24 1-MHz Serial Data Bus Interfaces Per GPC (23 Shared, 1 Dedicated)

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3 GPC 4GPC 4 GPC 5GPC 5

Typically triply redundant
devices, connected to
separate buses

Page 10Session 8121
SHARE 2007, San Diego

Cockpit View

Page 11Session 8121
SHARE 2007, San Diego

Shuttle’s General Purpose Computer (GPC)

The APThe AP--101S 101S
GPC is 19.55 GPC is 19.55
inches long, inches long,
7.62 inches 7.62 inches
high, 10.2 high, 10.2
inches wide, inches wide,
and weighs 64 and weighs 64
pounds. pounds.

It requires 550 It requires 550
watts of watts of
electrical electrical
power.power.

Page 12Session 8121
SHARE 2007, San Diego

Shuttle GPC Flight Software System
The GPCs host the Primary Avionics Software System (PASS) and Backup

Flight Software (BFS)

• PASS is a full-function software system controlling all mission phases
• Ascent, On-Orbit, Entry/Landing, and Ground Checkout overlays

for Guidance, Navigation, and Control (GNC)
• Separate Systems Management (SM) Overlay

– Antenna management, power and life support functions,
payload control, etc.

• Over 450 distinct functional applications
• Approx 400K SLOCs

• BFS is an independently developed and maintained software system
which provides redundancy during critical ascent and entry phases.

• Will be engaged in the event of a PASS redundant set failure
• Provides Systems Management/Special Processing and Payload

Support Capability which are not available in PASS during
Ascent and Entry

Page 13Session 8121
SHARE 2007, San Diego

Shuttle GPC Flight Software System

• Custom operating systems
– Real-time, multitasking, interrupt-driven system with pre-emptive

priority scheduling

• PASS and BFS are primarily coded in HAL/S
– All application software and a major part of the system software

• Core OS functions are AP101 assembler code

Page 14Session 8121
SHARE 2007, San Diego

• Ascent/Entry Configuration

– PASS controls the Flight Critical buses (flies the vehicle)
• Synchronized redundant set execution of identical software
• Two FC buses controlled by each PASS GPC
• All PASS GPCs listen to all FC buses
• OS maintains sync, ensures all redundant GPCs receive same inputs

– Backup Flight Software (BFS) listens on FC buses
• Typical Orbit Configuration

– FC buses divided between PASS GNC GPCs
– Halted PASS GPC is first backup (orbit configuration loaded)

Shuttle GPC Flight Software System

PASS
GNC

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3

PASS
SM

GPC 4GPC 4

BFS
(Halted)

GPC 5GPC 5

PASS
GNC

PASS
(Halted)

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3 GPC 4GPC 4

BFS
(Listen)

GPC 5GPC 5

PASS
GNC

PASS
GNC

PASS
GNC

PASS
GNC

Page 15Session 8121
SHARE 2007, San Diego

Phases of PASS

Mass
Memory
Utility

Entry

On-Orbit
Systems and

Payload
Management

On-Orbit
Checkout

On-Orbit

Ascent/
Aborts

Pre-Flight
Initialization
Checkout

Pre-flight
Memory

Configurations

On-Orbit
Memory

Liftoff

Return to Launch Site

Trans Atlantic Abort
Abort Once- around

Main Engine Cutoff

Tank Separation
Orbit Insertion

Booster Staging

Deorbit

Entry

Energy
Management

Approach
& Landing

Orbit
Circularization

On-Orbit
Operations

Page 16Session 8121
SHARE 2007, San Diego

Languages and Compilers

Page 17Session 8121
SHARE 2007, San Diego

Custom Language and Compiler Overview

z System

AP101
Assembler

HAL/S

XPL

Simple /
HLAL

Development
Languages

z System

AP101
Assembler

HAL/S

XPL

Program
Management

Facility
(Custom)

Compilers /
Translators

Target
System

AP101 Linkage Editor

IBM Binder

AP101 Linkage Editor

IBM Binder

z System

GPC

IBM Binder

Page 18Session 8121
SHARE 2007, San Diego

HAL/S Language
• The HAL/S language was developed under NASA direction in the early 1970’s

for aerospace applications
– Resembles PL/I
– Designed for reliability and readability

• Major language features
– Modular, structured programming language
– Facility to schedule tasks based on priority
– Vectors and matrices as standard data types

• Standard vector and matrix operators (dot and cross products, matrix
multiply and transpose, etc.) built in

– Common data pools
– Compiler-enforced restrictions on problematic language constructs (e.g.,

GO TO)
• Different restrictions for flight code and tool code

– Does not support dynamic allocation of memory

Page 19Session 8121
SHARE 2007, San Diego

HAL/S Sample Code
DECLARE S4_SUBSCRIPT INTEGER;

DECLARE ENTRY_NAME CHARACTER(*);

DECLARE INTEGER, SAVE, TEMP;

SAVE = INDEX(ENTRY_NAME,'$');

IF ENTRY_NAME$(SAVE+1) = '(' THEN

DO;

TEMP = SAVE +2;

DO WHILE ENTRY_NAME$(TEMP) >= '0' OR ENTRY_NAME$(TEMP) <= '9';

TEMP = TEMP + 1;

END;

ENTRY_NAME = ENTRY_NAME$(1 TO SAVE+1) ||

CHARACTER(S4_SUBSCRIPT) ||

ENTRY_NAME$(TEMP TO #);

END;

ELSE

ENTRY_NAME = ENTRY_NAME$(1 TO SAVE) ||

CHARACTER(S4_SUBSCRIPT);

Page 20Session 8121
SHARE 2007, San Diego

HAL/S Compiler

• The HAL/S Compiler system consists of
– A seven phase language processor which produces object

modules compatible with AP-101 Shuttle Support software
– A comprehensive run-time library which provides an extensive set

of mathematical, conversion, and language support routines
– Can also produce object modules targeted for z/OS

• Additional trivia…
– Written in XPL, another custom language
– Objects targeted for the GPC are linked using the AP 101 Linkage

Editor, another custom tool
– Interfaces to Flight OS Based on the IBM System/4 Pi Model AP-

101 (aka AP101S)

Page 21Session 8121
SHARE 2007, San Diego

AP101 Assembler & Linkage Editor
• The AP101 Assembler

– was created in the mid 1970s
– based on IBM OS/360 Assembler
– is written in IBM 390 Assembler
– runs under z/OS

• The AP101 Linkage Editor
– Provides the capability of combining and resolving external

references of separately assembled program modules to produce
an executable load module for the AP-101s Computer

– created in the mid 1970s
– is written in IBM 390 Assembler

Creates the overlays used during different flight phases

Page 22Session 8121
SHARE 2007, San Diego

XPL Language
• Developed at the Stanford Computation Center, the General Motors

Research Laboratory, and at the University of California at Santa Cruz

• Derived from PL/I

• Some differences between XPL and the PL/I constructs with the same
form:

– Declaration is mandatory
– Arrays are restricted to one dimension and the lower bound of all

arrays is implicitly zero
– There are no predefined abbreviations (use character, not char)
– Only types fixed, character, and bit are provided
– Bit strings are substantially different
– Do loops have only positive steps
– Procedures are not recursive and have only value (evaluated)

parameters

Page 23Session 8121
SHARE 2007, San Diego

XPL Sample Code
/* SUBROUTINE TO FIND OCCURRENCE OF ONE CHAR STRING IN ANOTHER. */
CHAR_INDEX:

PROCEDURE (STRING1, STRING2) FIXED;
DECLARE

STRING1 CHARACTER,
STRING2 CHARACTER,
L1 FIXED,
L2 FIXED,
I FIXED,
POS FIXED,
FOUND BIT(1);

L1 = LENGTH (STRING1);
L2 = LENGTH (STRING2);
POS = -1;
FOUND = FALSE;
I = 0;
IF (L2 <= L1) THEN DO;

DO WHILE (I <= (L1 - L2)) & (¬ FOUND);
IF (SUBSTR (STRING1, I, L2) = STRING2) THEN DO;

POS = I;
FOUND = TRUE;

END;
I = I + 1;

END;
END;
RETURN POS;

Page 24Session 8121
SHARE 2007, San Diego

XPL Compiler

• Written in XPL

• Can produce IBM 390 compatible object modules
– IBM Binder used for linking

Page 25Session 8121
SHARE 2007, San Diego

SIMPLE / HLAL

• Z/OS Assembler Applications written in our Houston’s High Level
Assembly Language (HLAL)

• SIMPLE is a pre-processor, producing IBM Assembler instructions
from HLAL statements

– Also produces a “pretty print” formatted listing with block
indention and numbering

Page 26Session 8121
SHARE 2007, San Diego

Tools for
Building, Reconfiguring, and Testing

Flight Software

Page 27Session 8121
SHARE 2007, San Diego

Application Tools
There are over 100 application tools on z/OS that support the

development, reconfiguration, build, and test of the Flight Software.
These tools directly affect the content of the shuttle mass memory
or are used to analyze the content and correctness of the flight
software.

These applications include:
• Preprocessors

– Create data tables that are part of the Flight Software

• Flight Software Build and Reconfiguration Tools
– Recreates data tables based on unique flight characteristics
– Puts together components of the FSW
– Creates the Mass Memory image which is installed on the shuttle
– Mass Memory compare utilities

Page 28Session 8121
SHARE 2007, San Diego

Application Tools
• Verification Autoscorers

– Automated verification of FSW data components

• Configuration Management
– Integral to entire process

• Simulator and Models

• Test Tools
– Simulation post processors, data reduction, plotting

• C++ Reusable Components
– String handling, Dynamic Dataset Allocation I/F, Containers,

Reports, etc

Page 29Session 8121
SHARE 2007, San Diego

Shuttle Flight Software
Simulator

Page 30Session 8121
SHARE 2007, San Diego

Flight Software Simulator

• Provides a full Shuttle simulation capability with real Flight Software
(FSW) and real Shuttle General Purpose Computers (GPCs) running in
a simulated environment

– All external devices and buses are modeled within the simulator

• Used by FSW developers and verifiers to test the Flight Software
before it is delivered to the end users/customers

• Used during flights if required to build/test a patch to the Flight
Software

• Runs under z/OS

Page 31Session 8121
SHARE 2007, San Diego

Simulator Component Configuration

Flight Equipment Interface Device
Custom hardware and software
Multitasking high data throughput
Collects diagnostic data from the GPC
Passes model output to the GPC
Passes GPC output to the models

FEIDZ/900 GPCs

Mainframe
Models cyclic processing

and synchronization with
GPC FSW

Performs command
processing and sequencing

Provides user controlled
diagnostic data collection
and logging

General Purpose Computer
Flight-equivalent

hardware executing the
Shuttle Flight Software

I/O goes over a MIA
adapter to interface with
the FEID instead of a MIA to
a shuttle device.

Page 32Session 8121
SHARE 2007, San Diego

Flight Equipment Interface Device (FEID)
• Utilizes the main controller from the System/7 computer
• 360/50 frame

• Connection to z900 recently converted from Bus and Tag (Parallel) to FICON
• The parallel channel FEIDs were defined as CTC on a 3088 control unit
• The FICON FEIDs are defined as FCTC

• Programming on Virtex 2 Pro chip accomplished using Very High
Density Logic (VHDL)

• Attaches to the GPC via the Avionics Ground Equipment (AGE) Interface

• Responds to GPC bus requests for data

• Manages GPC Start/Stop Synchronization

• Monitors effective address registers to know what instructions are executing
and what data is being accessed

Page 33Session 8121
SHARE 2007, San Diego

Simulator Software Overview
– Primarily Assembler Application

• Cannot run under Language Environment (LE) due to extensive
internal error handling and unique architecture

– Runs as a batch job
• Not technically real-time, but it appears that way to the system under

test
• Multi-tasking (about 10 major tasks and many other minor tasks)

– Unique access method to communicate with FEID
• EXCP level
• Attention interrupt handler and I/O appendages
• One dedicated channel for input from FEID

– Never ending read channel program (under normal conditions)
– PCI Interrupts used to tell access method where the channel

program is
• Another dedicated channel for both input and output

– Attention Interrupts used to signal error conditions

Page 34Session 8121
SHARE 2007, San Diego

Unique Characteristics

• The simulator can stop and start the FSW execution such that the FSW
has no noticeable perturbations to its functionality or timing.

– Controlled at the hardware level by the FEID.
• GPC hardware allows complete stopping at any instruction

– Supports robust diagnostic capabilities
• Can stop the FSW and extract/patch registers and data based on

instruction execution, memory reference, and I/O execution
• Can extract/patch register and data information during trace and

single step
• Can apply multiple I/O faults including killing the communication

on the bus entirely

Page 35Session 8121
SHARE 2007, San Diego

Unique Characteristics

• The math models of the simulator comprise the full set of environmental,
Guidance Navigation and Control (GNC), and interface models needed to make
the FSW think it is flying a Shuttle.

– The simulator does non-time-critical calculations while the FSW is running

– When the FSW finishes its minor cycle, the simulator does its time critical
calculations.

– The simulator can stop the FSW to catch up.

Page 36Session 8121
SHARE 2007, San Diego

Unique Characteristics

• The simulator user can create checkpoints of the simulation and can
then restart the simulation at a later time.

– Copies data from GPC, FEID, and simulator application to tape,
including state vectors, active commands, registers, etc.
(Checkpoint)

– Used later as the starting point of other simulations (Restart)
• Allows any user to resume a simulation at a later phase and

optionally modify the commands for additional testing
• Allows simulations of various parts of a flight without having

to go through launch every time

– The run started by a checkpoint will have identical results as the
original job at flight times after the checkpoint.

Page 37Session 8121
SHARE 2007, San Diego

Simulator User Interface

User Interface is called the Simulator Control Language (SCL)

• Primarily written in Assembler; Some PL/I

• The SCL is a high level testing language that provides for symbolic
substitution and conditional branching.

– Batch command language, breakpoints, data
collection/manipulation, checkpoints, etc

• SCL is syntax checked and converted into data tables and files
– Stored in a partitioned dataset for later use by the simulation job.

Page 38Session 8121
SHARE 2007, San Diego

Post Processing

• Primarily written in Fortran and PL/I

• All of the snapped and I/O logged data is placed on the log tape.

• This log tape is available for any user to post process and see the
results.

• The post processing toolset allows the user to see data in its raw
format (hex), its engineering units, or be plotted.

• The users may write their own post processing routine and link it with
the system version allowing them to manipulate the output data into
any desired format.

Page 39Session 8121
SHARE 2007, San Diego

Job Execution
Simulation job

steps designed
for efficient thru-
put

• JSTEP – offline
compilation of
test instructions

• AFM – totally
automated job
scheduling and
monitoring
based on priority

• Simulation –
simulation
utilizing the FEID

• Post Processing
– offline data
analysis and
reduction

Simulator
User

JSTEP
Syntax checks and
preprocesses Job script.

Auto FEID Monitor (AFM)
Manages FEID job queues
by priority and length of job;
Assigns jobs to FEIDs.

Simulation Step

Actual
Simulation

Flight Equipment
Interface Device
(FEID)

General Purpose
Computers
(GPC(s))

Post Processing
Prints reports and
formats data

Output
from the
Post
Processor

Mainframe

Page 40Session 8121
SHARE 2007, San Diego

Software Development
and

Build Tools

Page 41Session 8121
SHARE 2007, San Diego

Tool Languages and Compilers

Language Compiler % Total SLOCS
Assembler High Level Assembler V1.5 48
C++ C/C++ V1.7 15
PL/I PL/I for MVS and VM 1.1 9
XPL1 XPL1 9
ISPF Dialog Services ISPF V5.7 7
C C/C++ V1.7 5
HAL/S2 HAL/S2 3
FORTRAN VS FORTRAN V2.6 1
REXX REXX Compiler V1.4 (some

interpreted only) 1

SQL Oracle 1

1 1 Language and Compiler maintained in HoustonLanguage and Compiler maintained in Houston
2 2 Language and Compiler developed in Cambridge and maintained in HLanguage and Compiler developed in Cambridge and maintained in Houstonouston

Page 42Session 8121
SHARE 2007, San Diego

Builds

• The builds for both FSW and critical tools are carefully controlled.

– The changed source code is inspected in rigorous review
processes and submitted to the build process.

– The build process checks each individual module being changed
for authorizing Change Requests

• Configuration Management data is in an Oracle database
– The build process uses the submitted source code to build the

executable software

– Provides unwavering reliability that the source code reviewed is
accurately represented by the executable code built.

Page 43Session 8121
SHARE 2007, San Diego

Program Management Facility (PMF)
• Unique software that controls assembly, compilations, and link-edits of all

PASS FSW or critical tool software in a single batch job and step

• All modules defined in a “System Inventory” that directs PMF on which
translators / linkage editors / options to use and the expected condition codes

– System Inventory is maintained in an Oracle database

• Invokes a Source Dependency Scanner, when applicable, for use in
determining the order of module processing during a software build and any
modules that need to be recompiled due to inverted cross references

• Invokes preprocessors such as Simple, when applicable

• Invokes (Attaches) the appropriate translator(s)

• Invokes (Attaches) the appropriate linkage editor(s)
• Returns CC 8 if expected condition codes not received

Page 44Session 8121
SHARE 2007, San Diego

Test of Time

• A majority of the tools developed have existed since the 1970s

• COTS software used by our critical application tools are at supported
levels

– Establishment and enforcement of standards ensures standard
interfaces are used

– Z/OS software upgrades are carefully planned and tested
– All application software is recompiled when major upgrades are

made to the compilers

Page 45Session 8121
SHARE 2007, San Diego

Fun Facts and Acronyms

Page 46Session 8121
SHARE 2007, San Diego

SHUTTLE STACK (ORB / ET / SRB / MLP)

Page 47Session 8121
SHARE 2007, San Diego

SHUTTLE FUN FACTS
• It takes only about 8 minutes to accelerate to a speed of more than 17K MPH.
• Each Shuttle Main Engine weighs about 1 / 7th as much as a train engine but

delivers as much horsepower as 39 locomotives.
• The turbopump of the Shuttle Main Engine is so powerful it could drain an

average family-size swimming pool in 25 seconds.
• The LH2 in the main engine is -423 degrees F and when burned with LO2, the

temperature in the combustion chamber reaches +6000 degrees F.
• The energy released by the 3 Main Engines is equivalent to the output of 23

Hoover dams.
• Each of the SRBs burns 5 tons of propellant per second; a total of 1.1+ million

lbs in 2 minutes. The plume of flame ranges up to 500 ft. long.
• The temperature of the combustion gases in the SRB reach +6100 degrees F;

two-thirds the temperature of the surface of the sun.
• The four engines of a Boeing 747 produce 188,000 lbs of thrust; the two SRBs

are more powerful than 35 jumbo jets at takeoff.
• If their heat energy could be converted to electric power, two SRBs firing for

two minutes would produce 2.2 million kilowatt hours of power, enough to
supply the entire power demand of 87,000 homes for a full day.

Page 48Session 8121
SHARE 2007, San Diego

Acronyms
Acronym Meaning
AGE Avionics Ground Equipment
BFS Backup Flight Software

ET External Tank

GPS Global Positioning System

IDP Integrated Display Processor

IOP I/O Processor
IMU Inertial Measurement Unit

FC Flight Computer

HAL/S The real-time aerospace
programming language for Shuttle

GNC Guidance, Navigation, and
Control

GPC General Purpose Computer

CTC Channel to Channel

FEID Flight Equipment Interface Device

HLAL High Level Assembly Language

Page 49Session 8121
SHARE 2007, San Diego

Acronyms
Acronym Meaning
MDM Multiplexer/Demultiplexer
MEDS Multifunction Electronic Display

Subsystem
MIA Multiplexer Interface Adapter
MLP Mobile Launch Platform
OMS Orbital Maneuvering System
ORB Orbiter
PASS Primary Avionics Software System
PCMMU Pulse Code Modulation Master Unit
PMF Program Management Facility
RCS Reaction Control System
SIMPLE Structuring Interpreter for a Macro

Processing Language Extension
SLOC Source Lines Of Code
SM Systems Management
SRB Solid Rocket Booster

	17280-1.pdf
	Space Shuttle Usage of z/OS
	Contents
	Our Mission
	Products and Customers
	Facility Overview
	Facility Overview
	Shuttle Data Processing System
	Shuttle Data Processing System
	Shuttle Data Processing System
	Cockpit View
	Shuttle’s General Purpose Computer (GPC)
	Shuttle GPC Flight Software System
	Shuttle GPC Flight Software System
	Shuttle GPC Flight Software System
	Phases of PASS
	Custom Language and Compiler Overview
	HAL/S Language
	HAL/S Sample Code
	HAL/S Compiler
	AP101 Assembler & Linkage Editor
	XPL Language
	XPL Sample Code
	XPL Compiler
	SIMPLE / HLAL 	
	Application Tools
	Application Tools
	Flight Software Simulator
	Simulator Component Configuration
	Flight Equipment Interface Device (FEID)
	Simulator Software Overview
	Unique Characteristics�
	Unique Characteristics�
	Unique Characteristics
	Simulator User Interface
	Post Processing
	Job Execution
	Tool Languages and Compilers
	Builds
	Program Management Facility (PMF)
	Test of Time
	SHUTTLE STACK (ORB / ET / SRB / MLP)
	SHUTTLE FUN FACTS
	Acronyms
	Acronyms
	Space Shuttle Usage of z/OS
	Contents
	Our Mission
	Products and Customers
	Facility Overview
	Facility Overview
	Shuttle Data Processing System
	Shuttle Data Processing System
	Shuttle Data Processing System
	Cockpit View
	Shuttle’s General Purpose Computer (GPC)
	Shuttle GPC Flight Software System
	Shuttle GPC Flight Software System
	Shuttle GPC Flight Software System
	Phases of PASS
	Custom Language and Compiler Overview
	HAL/S Language
	HAL/S Sample Code
	HAL/S Compiler
	AP101 Assembler & Linkage Editor
	XPL Language
	XPL Sample Code
	XPL Compiler
	SIMPLE / HLAL 	
	Application Tools
	Application Tools
	Flight Software Simulator
	Simulator Component Configuration
	Flight Equipment Interface Device (FEID)
	Simulator Software Overview
	Unique Characteristics�
	Unique Characteristics�
	Unique Characteristics
	Simulator User Interface
	Post Processing
	Job Execution
	Tool Languages and Compilers
	Builds
	Program Management Facility (PMF)
	Test of Time
	SHUTTLE STACK (ORB / ET / SRB / MLP)
	SHUTTLE FUN FACTS
	Acronyms
	Acronyms

