
Space Shuttle Usage of z/OS 

Did you know that the software running on the Shuttle’s main computers is 
developed, built and tested on z/OS?   Come to this session to learn about the 
languages, preprocessors, and compilers (custom and COTS) used to generate 
and test the Shuttle’s Primary Avionics Software System (PASS).  It will also 
show the hardware and unique access methods used to attach the Shuttle’s 
onboard computers to the z900 to create a simulation environment for 
development and testing.
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United Space Alliance 
Flight Software 

To be the world-class software leader for human space flight 
providing software that is safe, on-time, error free, and 

cost-effective

Our Mission
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Facility Overview
z/900 

Model 2064-102
78 MSUs (capped at 65 MSUs) 

2 CPs, 1 IFL
16 Gig Memory 

3.6 Terabytes DASD 

Development 

LPAR 1
LPAR 2

Testing  

LPAR 3
LPAR 4

System Build

LPAR 6
LPAR 7

LPAR 5

Production  

z/OS V1.7
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Major Products: 
• JES3 (each LPAR is a standalone Global)
• IMS (vehicle and payload configuration information)
• Compilers (PL/I for MVS&VM, C/C++ V1.7, Assembler, VS FORTRAN 2.6, REXX 

V1.4) 
• RACF 
• OEM 

– Oracle (configuration management of all source changes)
– CA Suite (Ops, TMS, etc) 
– EJES 
– Astute 
– Abendaid / Fileaid

Facility Overview 
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Shuttle Data Processing System
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Shuttle Data Processing System
• AP-101S General Purpose Computers (GPC)

– Radiation tolerant processor for real-time applications
– Architecture evolved from the IBM System/360
– Same processor family used in several military aircraft (B-1B,…)
– Approximately 1.3 MIPS
– CPU Oscillator 40 MHz  
– Memory – Static RAM CMOS technology

• 262,144 FULLWORDS (32 BITS) = 1 MB
• Access/Cycle Time = 250 nanoseconds

• Mass Memory 
– Solid State Memory contains several copies of executables
– Avionics overlay software for each flight phase is loaded from here
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Shuttle Data Processing System

• Serial Data Buses
– 24 Data Buses - 1 MHZ Serial Channels
– Unique bus using architecture that evolved into MIL-STD-1553
– Any bus has a single GPC commander, all GPCs can listen on most buses

• Multiplexers/Demultiplexers (MDM)
– Provide serial, analog, or discrete interface between end devices and 

serial data bus 

• Multifunction Electronic Display Subsystem (MEDS)
– Crew GPC display and keyboard interface

• Completely fly-by-wire system
– Crew flight controls all electrically connected via GPCs
– No direct mechanical or hydraulic linkages (except landing gear)
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Shuttle Data Processing System

CPU 1

IOP 1

CPU 2 CPU 3 CPU 4 CPU 5

IOP 2 IOP 3 IOP 4 IOP 5

Intercomputer (5)
Mass Memory (2)

PCMMU I/F (5);
1 Dedicated per GPC

Payload Operation (2)

Launch Function (2)

Display System (4)

Flight Critical Sensor and Control (8)

Crew
Control
Panels

Discrete Inputs and Outputs Among IOPs, Control Panels and Mass Memories

GNC Sensors and Effectors
- Engine Controllers
- RCS Jets
- Hand Controllers
- IMUs
- Navigation Sensors
- MEDS IDPs (Dedicated Displays)
- Etc.

Mass
Memory

Units

Keyboard 
Inputs, 

Displays

PCMMU
Telemetry

Instrumentation 
Data

Payload 
Interface, 
Payload Bay 
Doors

Launch Data Bus,
SRB MDMs (D/L Data),
RMS

24 1-MHz Serial Data Bus Interfaces Per GPC (23 Shared, 1 Dedicated)

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3 GPC 4GPC 4 GPC 5GPC 5

Typically triply redundant 
devices,  connected to 
separate buses
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Cockpit View 
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Shuttle’s General Purpose Computer (GPC)

The APThe AP--101S 101S 
GPC is 19.55 GPC is 19.55 
inches long, inches long, 
7.62 inches 7.62 inches 
high,  10.2 high,  10.2 
inches wide, inches wide, 
and weighs 64 and weighs 64 
pounds. pounds. 

It requires 550 It requires 550 
watts of watts of 
electrical electrical 
power.power.



Page 12Session 8121
SHARE 2007, San Diego

Shuttle GPC Flight Software System
The GPCs host the Primary Avionics Software System (PASS) and Backup 

Flight Software (BFS)

• PASS is a full-function software system controlling all mission phases
• Ascent, On-Orbit, Entry/Landing, and Ground Checkout overlays 

for Guidance, Navigation, and Control (GNC)
• Separate Systems Management (SM) Overlay

– Antenna management, power and life support functions, 
payload control, etc.

• Over 450 distinct functional applications
• Approx 400K SLOCs

• BFS is an independently developed and maintained  software system 
which provides redundancy during critical ascent and entry  phases.  

• Will be engaged in the event of a PASS redundant set failure
• Provides Systems Management/Special Processing and Payload 

Support Capability which are not available in PASS during 
Ascent and Entry   
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Shuttle GPC Flight Software System

• Custom operating systems
– Real-time, multitasking, interrupt-driven system with pre-emptive 

priority scheduling

• PASS and BFS are primarily coded in HAL/S
– All application software and a major part of the system software

• Core OS functions are AP101 assembler code
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• Ascent/Entry Configuration

– PASS controls the Flight Critical buses (flies the vehicle)
• Synchronized redundant set execution of identical software
• Two FC buses controlled by each PASS GPC
• All PASS GPCs listen to all FC buses
• OS maintains sync, ensures all redundant GPCs receive same inputs

– Backup Flight Software (BFS) listens on FC buses 
• Typical Orbit Configuration

– FC buses divided between PASS GNC GPCs
– Halted PASS GPC is first backup (orbit configuration loaded)

Shuttle GPC Flight Software System

PASS
GNC

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3

PASS
SM

GPC 4GPC 4

BFS
(Halted)

GPC 5GPC 5

PASS
GNC

PASS
(Halted)

GPC 1GPC 1 GPC 2GPC 2 GPC 3GPC 3 GPC 4GPC 4

BFS
(Listen)

GPC 5GPC 5

PASS
GNC

PASS
GNC

PASS
GNC

PASS
GNC
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Languages and Compilers
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Custom Language and Compiler Overview

z System

AP101 
Assembler

HAL/S 

XPL

Simple / 
HLAL

Development 
Languages

z System

AP101 
Assembler

HAL/S 

XPL

Program 
Management 

Facility 
(Custom)

Compilers / 
Translators

Target 
System

AP101 Linkage Editor

IBM Binder

AP101 Linkage Editor

IBM Binder

z System

GPC

IBM Binder
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HAL/S Language
• The HAL/S language was developed under NASA direction in the early 1970’s 

for aerospace applications
– Resembles PL/I 
– Designed for reliability and readability

• Major language features
– Modular, structured programming language
– Facility to schedule tasks based on priority
– Vectors and matrices as standard data types

• Standard vector and matrix operators (dot and cross products, matrix 
multiply and transpose, etc.) built in

– Common data pools
– Compiler-enforced restrictions on problematic language constructs (e.g., 

GO TO)
• Different restrictions for flight code and tool code

– Does not support dynamic allocation of memory
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HAL/S Sample Code
DECLARE S4_SUBSCRIPT INTEGER;

DECLARE ENTRY_NAME CHARACTER(*);

DECLARE INTEGER, SAVE, TEMP;

SAVE = INDEX(ENTRY_NAME,'$');

IF ENTRY_NAME$(SAVE+1) = '(' THEN

DO;

TEMP = SAVE +2;

DO WHILE ENTRY_NAME$(TEMP) >= '0' OR ENTRY_NAME$(TEMP) <= '9';

TEMP = TEMP + 1;

END;

ENTRY_NAME = ENTRY_NAME$(1 TO SAVE+1) ||

CHARACTER(S4_SUBSCRIPT) ||

ENTRY_NAME$(TEMP TO #);

END;

ELSE

ENTRY_NAME = ENTRY_NAME$(1 TO SAVE) ||

CHARACTER(S4_SUBSCRIPT);
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HAL/S Compiler

• The HAL/S Compiler system consists of 
– A seven phase language processor which produces object 

modules compatible with AP-101 Shuttle Support software
– A comprehensive run-time library which provides an extensive set 

of mathematical, conversion, and language support routines
– Can also produce object modules targeted for z/OS 

• Additional trivia…
– Written in XPL, another custom language
– Objects targeted for the GPC are linked using the AP 101 Linkage

Editor, another custom tool
– Interfaces to Flight OS Based on the IBM System/4 Pi Model AP-

101 (aka AP101S)
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AP101 Assembler & Linkage Editor
• The AP101 Assembler 

– was created in the mid 1970s
– based on IBM OS/360 Assembler
– is written in IBM 390 Assembler 
– runs under z/OS

• The AP101 Linkage Editor 
– Provides the capability of combining and resolving external 

references of separately assembled program modules to produce 
an executable load module for the AP-101s Computer

– created in the mid 1970s
– is written in IBM 390 Assembler 

Creates the overlays used during different flight phases
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XPL Language
• Developed at the Stanford Computation Center, the General Motors

Research Laboratory, and at the University of California at Santa Cruz

• Derived from PL/I

• Some differences between XPL and the PL/I constructs with the same 
form:

– Declaration is mandatory
– Arrays are restricted to one dimension and the lower bound of all 

arrays is implicitly zero
– There are no predefined abbreviations (use character, not char)
– Only types fixed, character, and bit are provided 
– Bit strings are substantially different
– Do loops have only positive steps
– Procedures are not recursive and have only value (evaluated) 

parameters 
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XPL Sample Code
/* SUBROUTINE TO FIND OCCURRENCE OF ONE CHAR STRING IN ANOTHER. */
CHAR_INDEX:

PROCEDURE (STRING1, STRING2) FIXED;
DECLARE

STRING1     CHARACTER,
STRING2     CHARACTER,
L1          FIXED,
L2          FIXED,
I           FIXED,
POS         FIXED,
FOUND       BIT(1);

L1    = LENGTH (STRING1);
L2    = LENGTH (STRING2);
POS   = -1;
FOUND = FALSE;
I     = 0;
IF (L2 <= L1) THEN DO;

DO WHILE (I <= (L1 - L2)) & (¬ FOUND);
IF (SUBSTR (STRING1, I, L2) = STRING2) THEN DO;

POS   = I;
FOUND = TRUE;

END;
I = I + 1;

END;
END;
RETURN POS;
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XPL Compiler

• Written in XPL  

• Can produce IBM 390 compatible object modules 
– IBM Binder used for linking 
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SIMPLE / HLAL 

• Z/OS Assembler Applications written in our Houston’s High Level 
Assembly Language (HLAL)

• SIMPLE is a pre-processor, producing IBM Assembler instructions 
from HLAL statements 

– Also produces a “pretty print” formatted listing with block 
indention and numbering
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Tools for
Building, Reconfiguring, and Testing 

Flight Software
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Application Tools
There are over 100 application tools on z/OS that support the 

development, reconfiguration, build, and test of the Flight Software.   
These tools directly affect the content of the shuttle mass memory 
or are used to analyze the content and correctness of the flight
software.  

These applications include: 
• Preprocessors 

– Create data tables that are part of the Flight Software 

• Flight Software Build and Reconfiguration Tools
– Recreates data tables based on unique flight characteristics
– Puts together components of the FSW 
– Creates the Mass Memory image which is installed on the shuttle
– Mass Memory compare utilities
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Application Tools 
• Verification Autoscorers

– Automated verification of FSW data components

• Configuration Management 
– Integral to entire process 

• Simulator and Models 

• Test Tools
– Simulation post processors, data reduction, plotting 

• C++ Reusable Components
– String handling, Dynamic Dataset Allocation I/F, Containers, 

Reports, etc 
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Shuttle Flight Software
Simulator
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Flight Software Simulator

• Provides a full Shuttle simulation capability with real Flight Software 
(FSW) and real Shuttle General Purpose Computers (GPCs) running in 
a simulated environment

– All external devices and buses are modeled within the simulator

• Used by FSW developers and verifiers to test the Flight Software
before it is delivered to the end users/customers

• Used during flights if required to build/test a patch to the Flight 
Software

• Runs under z/OS 
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Simulator Component Configuration

Flight Equipment Interface Device 
Custom hardware and software 
Multitasking high data throughput
Collects diagnostic data from the GPC
Passes model output to the GPC
Passes GPC output to the models

FEIDZ/900 GPCs

Mainframe
Models cyclic processing 

and synchronization with 
GPC FSW

Performs command 
processing and sequencing

Provides user controlled 
diagnostic data collection 
and logging 

General Purpose Computer
Flight-equivalent 

hardware executing the 
Shuttle Flight Software

I/O goes over a MIA 
adapter to interface with 
the FEID instead of a MIA to 
a shuttle device. 
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Flight Equipment Interface Device (FEID)  
• Utilizes the main controller from the System/7 computer 
• 360/50 frame

• Connection to z900 recently converted from Bus and Tag (Parallel) to FICON 
• The parallel channel FEIDs were defined as CTC on a 3088 control unit
• The FICON FEIDs are defined as FCTC

• Programming on Virtex 2 Pro chip accomplished using Very High 
Density Logic (VHDL)

• Attaches to the GPC via the Avionics Ground Equipment (AGE) Interface 

• Responds to GPC bus requests for data

• Manages GPC Start/Stop Synchronization 

• Monitors effective address registers to know what instructions are executing 
and what data is being accessed 
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Simulator Software Overview
– Primarily Assembler Application 

• Cannot run under Language Environment (LE) due to extensive 
internal error handling and unique architecture

– Runs as a batch job
• Not technically real-time, but it appears that way to the system under 

test
• Multi-tasking (about 10 major tasks and many other minor tasks)

– Unique access method to communicate with FEID
• EXCP level
• Attention interrupt handler and I/O appendages
• One dedicated channel for input from FEID 

– Never ending read channel program (under normal conditions)
– PCI Interrupts used to tell access method where the channel 

program is
• Another dedicated channel for both input and output 

– Attention Interrupts used to signal error conditions
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Unique Characteristics

• The simulator can stop and start the FSW execution such that the FSW 
has no noticeable perturbations to its functionality or timing.

– Controlled at the hardware level by the FEID.
• GPC hardware allows complete stopping at any instruction

– Supports robust diagnostic capabilities
• Can stop the FSW and extract/patch registers and data based on 

instruction execution, memory reference, and I/O execution
• Can extract/patch register and data information during trace and

single step
• Can apply multiple I/O faults including killing the communication 

on the bus entirely
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Unique Characteristics

• The math models of the simulator comprise the full set of environmental, 
Guidance Navigation and Control (GNC), and interface models needed to make 
the FSW think it is flying a Shuttle. 

– The simulator does non-time-critical calculations while the FSW is running

– When the FSW finishes its minor cycle, the simulator does its time critical 
calculations.

– The simulator can stop the FSW to catch up.



Page 36Session 8121
SHARE 2007, San Diego

Unique Characteristics

• The simulator user can create checkpoints of the simulation and can 
then restart the simulation at a later time. 

– Copies data from GPC, FEID, and simulator application to tape, 
including state vectors, active commands, registers, etc. 
(Checkpoint)

– Used later as the starting point of other simulations (Restart)
• Allows any user to resume a simulation at a later phase and 

optionally modify the commands for additional testing
• Allows simulations of various parts of a flight without having 

to go through launch every time

– The run started by a checkpoint will have identical results as the 
original job at flight times after the checkpoint.
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Simulator User Interface

User Interface is called the Simulator Control Language (SCL)

• Primarily written in Assembler;  Some PL/I

• The SCL is a high level testing language that provides for symbolic 
substitution and conditional branching.

– Batch command language, breakpoints, data 
collection/manipulation, checkpoints, etc 

• SCL is syntax checked and converted into data tables and files 
– Stored in a partitioned dataset for later use by the simulation job. 
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Post Processing

• Primarily written in Fortran and PL/I

• All of the snapped and I/O logged data is placed on the log tape.

• This log tape is available for any user to post process and see the 
results.

• The post processing toolset allows the user to see data in its raw 
format (hex), its engineering units, or be plotted.

• The users may write their own post processing routine and link it with 
the system version allowing them to manipulate the output data into 
any desired format.
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Job Execution
Simulation job 

steps designed 
for efficient thru-
put

• JSTEP – offline 
compilation of 
test instructions

• AFM – totally 
automated job 
scheduling and 
monitoring 
based on priority

• Simulation –
simulation 
utilizing the FEID

• Post Processing 
– offline data 
analysis and 
reduction

Simulator 
User

JSTEP
Syntax checks and  
preprocesses Job script. 

Auto FEID Monitor (AFM)
Manages FEID job queues 
by priority and length of job; 
Assigns jobs to FEIDs. 

Simulation Step

Actual 
Simulation 

Flight Equipment 
Interface Device 
(FEID) 

General Purpose 
Computers 
(GPC(s))

Post Processing
Prints reports and 
formats data

Output 
from the 
Post 
Processor

Mainframe
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Software Development 
and 

Build Tools
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Tool Languages and Compilers

Language Compiler % Total SLOCS
Assembler High Level Assembler V1.5 48
C++ C/C++ V1.7 15
PL/I PL/I for MVS and VM 1.1 9
XPL1 XPL1 9
ISPF Dialog Services ISPF V5.7  7
C C/C++ V1.7 5
HAL/S2 HAL/S2 3
FORTRAN VS FORTRAN V2.6 1
REXX REXX Compiler V1.4 (some 

interpreted only) 1

SQL Oracle 1

1 1 Language and Compiler maintained in HoustonLanguage and Compiler maintained in Houston
2 2 Language and Compiler developed in Cambridge and maintained in HLanguage and Compiler developed in Cambridge and maintained in Houstonouston



Page 42Session 8121
SHARE 2007, San Diego

Builds

• The builds for both FSW and critical tools are carefully controlled.

– The changed source code is inspected in rigorous review 
processes and submitted to the build process.

– The build process checks each individual module being changed 
for authorizing Change Requests

• Configuration Management data is in an Oracle database
– The build process uses the submitted source code to build the 

executable software

– Provides unwavering reliability that the source code reviewed is
accurately represented by the executable code built.
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Program Management Facility (PMF)
• Unique software that controls assembly, compilations, and link-edits of all 

PASS FSW or critical tool software in a single batch job and step  

• All modules defined in a “System Inventory” that directs PMF on which 
translators / linkage editors / options to use and the expected condition codes

– System Inventory is maintained in an Oracle database  

• Invokes a Source Dependency Scanner, when applicable, for use in
determining the order of module processing during a software build and any 
modules that need to be recompiled due to inverted cross references 

• Invokes preprocessors such as Simple, when applicable 

• Invokes (Attaches) the appropriate translator(s)

• Invokes (Attaches) the appropriate linkage editor(s) 
• Returns CC 8 if expected condition codes not received
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Test of Time

• A majority of the tools developed have existed since the 1970s 

• COTS software used by our critical application tools are at supported 
levels 

– Establishment and enforcement of standards ensures standard 
interfaces are used 

– Z/OS software upgrades are carefully planned and tested 
– All application software is recompiled when major upgrades are 

made to the compilers
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Fun Facts and Acronyms
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SHUTTLE STACK (ORB / ET / SRB / MLP)
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SHUTTLE FUN FACTS
• It takes only about 8 minutes to accelerate to a speed of more than 17K MPH.
• Each Shuttle Main Engine weighs about 1 / 7th as much as a train engine but 

delivers as much horsepower as 39 locomotives.
• The turbopump of the Shuttle Main Engine is so powerful it could drain an 

average family-size swimming pool in 25 seconds.
• The LH2 in the main engine is -423 degrees F and when burned with LO2, the 

temperature in the combustion chamber reaches +6000 degrees F.
• The energy released by the 3 Main Engines is equivalent to the output of 23 

Hoover dams.
• Each of the SRBs burns 5 tons of propellant per second; a total of 1.1+ million 

lbs in 2 minutes.  The plume of flame ranges up to 500 ft. long.
• The temperature of the combustion gases in the SRB reach +6100 degrees F; 

two-thirds the temperature of the surface of the sun.
• The four engines of a Boeing 747 produce 188,000 lbs of thrust; the two SRBs 

are more powerful than 35 jumbo jets at takeoff.
• If their heat energy could be converted to electric power, two SRBs firing for 

two minutes would produce 2.2 million kilowatt hours of power, enough to 
supply the entire power demand of 87,000 homes for a full day.  
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Acronyms
Acronym Meaning
AGE Avionics Ground Equipment
BFS Backup Flight Software

ET External Tank

GPS Global Positioning System

IDP Integrated Display Processor 

IOP I/O Processor
IMU Inertial Measurement Unit

FC Flight Computer

HAL/S The real-time aerospace 
programming language for Shuttle  

GNC Guidance,  Navigation, and 
Control

GPC General Purpose Computer

CTC Channel to Channel

FEID Flight Equipment Interface Device

HLAL High Level Assembly Language
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Acronyms
Acronym Meaning
MDM Multiplexer/Demultiplexer
MEDS Multifunction Electronic Display 

Subsystem
MIA Multiplexer Interface Adapter
MLP Mobile Launch Platform
OMS Orbital Maneuvering System
ORB Orbiter
PASS Primary Avionics Software System
PCMMU Pulse Code Modulation Master Unit
PMF Program Management Facility
RCS Reaction Control System
SIMPLE Structuring Interpreter for a Macro 

Processing Language Extension
SLOC Source Lines Of Code
SM Systems Management
SRB Solid Rocket Booster
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